Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080476464> ?p ?o ?g. }
- W3080476464 endingPage "41199" @default.
- W3080476464 startingPage "41185" @default.
- W3080476464 abstract "In this work, the proof of concept of a functional membraneless microfluidic Zn-air cell (μZAC) that operates with a flow-through arrangement is presented for the first time, where the activity and durability can be modulated by electrodepositing Zn on porous carbon electrodes. For this purpose, Zn electrodes were obtained using chronoamperometry and varying the electrodeposition times (20, 40, and 60 min), resulting in porous electrodes with Zn thicknesses of 3.3 ± 0.3, 11.6 ± 2.4, and 34.8 ± 5.1 μm, respectively. Pt/C was initially used as the cathode to analyze variables, such as KOH concentration and flow rate, and then, two manganese-based materials were evaluated (α-MnO2 and MnMn2O4 spinel, labeled as Mn3O4) to determine the effect of inexpensive materials on the cell performance. According to the transmission electron microscopy (TEM) results, α-MnO2 has a nanorod-like shape with a diameter of 11 ± 1.5 nm, while Mn3O4 presented a hemispherical shape with an average particle size of 22 ± 1.8 nm. The use of α-MnO2 and Mn3O4 cathodic materials resulted in cell voltages of 1.39 and 1.35 V and maximum power densities of 308 and 317 mW cm-2, respectively. The activities of both materials were analyzed through density of state calculations; all manganese species in the α-material MnO2 presented an equivalent density of states with a reduced orbital occupation to the left of the Fermi energy, which allowed for better global performance above Mn3O4/C and Pt/C." @default.
- W3080476464 created "2020-09-01" @default.
- W3080476464 creator A5000346312 @default.
- W3080476464 creator A5023356593 @default.
- W3080476464 creator A5035278647 @default.
- W3080476464 creator A5047332811 @default.
- W3080476464 creator A5051203679 @default.
- W3080476464 creator A5060757061 @default.
- W3080476464 creator A5061829985 @default.
- W3080476464 creator A5072311941 @default.
- W3080476464 creator A5080047990 @default.
- W3080476464 date "2020-08-25" @default.
- W3080476464 modified "2023-10-18" @default.
- W3080476464 title "A Flow-Through Membraneless Microfluidic Zinc–Air Cell" @default.
- W3080476464 cites W1187455807 @default.
- W3080476464 cites W149011025 @default.
- W3080476464 cites W1754915185 @default.
- W3080476464 cites W1966531711 @default.
- W3080476464 cites W1973010644 @default.
- W3080476464 cites W1984149210 @default.
- W3080476464 cites W1986689941 @default.
- W3080476464 cites W1993367737 @default.
- W3080476464 cites W1995423733 @default.
- W3080476464 cites W2003693202 @default.
- W3080476464 cites W2017305045 @default.
- W3080476464 cites W2022002823 @default.
- W3080476464 cites W2035359836 @default.
- W3080476464 cites W2044275899 @default.
- W3080476464 cites W2051469879 @default.
- W3080476464 cites W2063984037 @default.
- W3080476464 cites W2072611990 @default.
- W3080476464 cites W2078159906 @default.
- W3080476464 cites W2083396181 @default.
- W3080476464 cites W2087360055 @default.
- W3080476464 cites W2115959992 @default.
- W3080476464 cites W2118511386 @default.
- W3080476464 cites W2155399117 @default.
- W3080476464 cites W2171783309 @default.
- W3080476464 cites W2206517374 @default.
- W3080476464 cites W2214963632 @default.
- W3080476464 cites W2282828853 @default.
- W3080476464 cites W2323642592 @default.
- W3080476464 cites W2346458676 @default.
- W3080476464 cites W2474258783 @default.
- W3080476464 cites W2500498447 @default.
- W3080476464 cites W2520239213 @default.
- W3080476464 cites W2556221761 @default.
- W3080476464 cites W2558095361 @default.
- W3080476464 cites W2570691968 @default.
- W3080476464 cites W2580941793 @default.
- W3080476464 cites W2597799737 @default.
- W3080476464 cites W2597849655 @default.
- W3080476464 cites W2620977450 @default.
- W3080476464 cites W2636098063 @default.
- W3080476464 cites W2727160814 @default.
- W3080476464 cites W2734082039 @default.
- W3080476464 cites W2734212312 @default.
- W3080476464 cites W2771714230 @default.
- W3080476464 cites W2784065565 @default.
- W3080476464 cites W2788289359 @default.
- W3080476464 cites W2794914615 @default.
- W3080476464 cites W2801321725 @default.
- W3080476464 cites W2802184516 @default.
- W3080476464 cites W2804638067 @default.
- W3080476464 cites W2891078613 @default.
- W3080476464 cites W2903035745 @default.
- W3080476464 cites W2906741329 @default.
- W3080476464 cites W2909345084 @default.
- W3080476464 cites W2912981441 @default.
- W3080476464 cites W2944262866 @default.
- W3080476464 cites W2964407265 @default.
- W3080476464 cites W2966165499 @default.
- W3080476464 cites W2966623735 @default.
- W3080476464 cites W2983241518 @default.
- W3080476464 cites W4240925483 @default.
- W3080476464 doi "https://doi.org/10.1021/acsami.0c08525" @default.
- W3080476464 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32840345" @default.
- W3080476464 hasPublicationYear "2020" @default.
- W3080476464 type Work @default.
- W3080476464 sameAs 3080476464 @default.
- W3080476464 citedByCount "9" @default.
- W3080476464 countsByYear W30804764642021 @default.
- W3080476464 countsByYear W30804764642022 @default.
- W3080476464 countsByYear W30804764642023 @default.
- W3080476464 crossrefType "journal-article" @default.
- W3080476464 hasAuthorship W3080476464A5000346312 @default.
- W3080476464 hasAuthorship W3080476464A5023356593 @default.
- W3080476464 hasAuthorship W3080476464A5035278647 @default.
- W3080476464 hasAuthorship W3080476464A5047332811 @default.
- W3080476464 hasAuthorship W3080476464A5051203679 @default.
- W3080476464 hasAuthorship W3080476464A5060757061 @default.
- W3080476464 hasAuthorship W3080476464A5061829985 @default.
- W3080476464 hasAuthorship W3080476464A5072311941 @default.
- W3080476464 hasAuthorship W3080476464A5080047990 @default.
- W3080476464 hasConcept C113196181 @default.
- W3080476464 hasConcept C121332964 @default.
- W3080476464 hasConcept C126201875 @default.
- W3080476464 hasConcept C127413603 @default.