Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080479963> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W3080479963 endingPage "288" @default.
- W3080479963 startingPage "267" @default.
- W3080479963 abstract "Targeting protein-protein interactions is a challenge and crucial task of the drug discovery process. A good starting point for rational drug design is the identification of hot spots (HS) at protein-protein interfaces, typically conserved residues that contribute most significantly to the binding. In this chapter, we depict point-by-point an in-house pipeline used for HS prediction using only sequence-based features from the well-known SpotOn dataset of soluble proteins (Moreira et al., Sci Rep 7:8007, 2017), through the implementation of a deep neural network. The presented pipeline is divided into three steps: (1) feature extraction, (2) deep learning classification, and (3) model evaluation. We present all the available resources, including code snippets, the main dataset, and the free and open-source modules/packages necessary for full replication of the protocol. The users should be able to develop an HS prediction model with accuracy, precision, recall, and AUROC of 0.96, 0.93, 0.91, and 0.86, respectively." @default.
- W3080479963 created "2020-09-01" @default.
- W3080479963 creator A5044744702 @default.
- W3080479963 creator A5057247289 @default.
- W3080479963 creator A5070410513 @default.
- W3080479963 creator A5079723208 @default.
- W3080479963 creator A5084170611 @default.
- W3080479963 date "2020-08-18" @default.
- W3080479963 modified "2023-09-25" @default.
- W3080479963 title "Predicting Hot Spots Using a Deep Neural Network Approach" @default.
- W3080479963 cites W1505191356 @default.
- W3080479963 cites W2039058965 @default.
- W3080479963 cites W2045870710 @default.
- W3080479963 cites W2103485392 @default.
- W3080479963 cites W2114850508 @default.
- W3080479963 cites W2136206140 @default.
- W3080479963 cites W2146292423 @default.
- W3080479963 cites W2156472837 @default.
- W3080479963 cites W2342249984 @default.
- W3080479963 cites W2462945209 @default.
- W3080479963 cites W2475686134 @default.
- W3080479963 cites W2742299251 @default.
- W3080479963 cites W2808147451 @default.
- W3080479963 cites W2890285536 @default.
- W3080479963 cites W2899942534 @default.
- W3080479963 cites W2901654183 @default.
- W3080479963 cites W2919115771 @default.
- W3080479963 doi "https://doi.org/10.1007/978-1-0716-0826-5_13" @default.
- W3080479963 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32804371" @default.
- W3080479963 hasPublicationYear "2020" @default.
- W3080479963 type Work @default.
- W3080479963 sameAs 3080479963 @default.
- W3080479963 citedByCount "2" @default.
- W3080479963 countsByYear W30804799632021 @default.
- W3080479963 countsByYear W30804799632022 @default.
- W3080479963 crossrefType "book-chapter" @default.
- W3080479963 hasAuthorship W3080479963A5044744702 @default.
- W3080479963 hasAuthorship W3080479963A5057247289 @default.
- W3080479963 hasAuthorship W3080479963A5070410513 @default.
- W3080479963 hasAuthorship W3080479963A5079723208 @default.
- W3080479963 hasAuthorship W3080479963A5084170611 @default.
- W3080479963 hasConcept C153180895 @default.
- W3080479963 hasConcept C154945302 @default.
- W3080479963 hasConcept C2984842247 @default.
- W3080479963 hasConcept C41008148 @default.
- W3080479963 hasConcept C50644808 @default.
- W3080479963 hasConceptScore W3080479963C153180895 @default.
- W3080479963 hasConceptScore W3080479963C154945302 @default.
- W3080479963 hasConceptScore W3080479963C2984842247 @default.
- W3080479963 hasConceptScore W3080479963C41008148 @default.
- W3080479963 hasConceptScore W3080479963C50644808 @default.
- W3080479963 hasLocation W30804799631 @default.
- W3080479963 hasOpenAccess W3080479963 @default.
- W3080479963 hasPrimaryLocation W30804799631 @default.
- W3080479963 hasRelatedWork W1978450727 @default.
- W3080479963 hasRelatedWork W2033914206 @default.
- W3080479963 hasRelatedWork W2146076056 @default.
- W3080479963 hasRelatedWork W2163831990 @default.
- W3080479963 hasRelatedWork W2378160586 @default.
- W3080479963 hasRelatedWork W2386387936 @default.
- W3080479963 hasRelatedWork W2773120646 @default.
- W3080479963 hasRelatedWork W2774265021 @default.
- W3080479963 hasRelatedWork W3003836766 @default.
- W3080479963 hasRelatedWork W4244943737 @default.
- W3080479963 isParatext "false" @default.
- W3080479963 isRetracted "false" @default.
- W3080479963 magId "3080479963" @default.
- W3080479963 workType "book-chapter" @default.