Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080484934> ?p ?o ?g. }
- W3080484934 endingPage "2135" @default.
- W3080484934 startingPage "2123" @default.
- W3080484934 abstract "Objective: Steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) that can deliver a high information transfer rate (ITR) usually require subject's calibration data to learn the class- and subject-specific model parameters (e.g. the spatial filters and SSVEP templates). Normally, the amount of the calibration data for learning is proportional to the number of classes (or visual stimuli), which could be huge and consequently lead to a time-consuming calibration. This study presents a transfer learning scheme to substantially reduce the calibration effort. Methods: Inspired by the parameter-based and instance-based transfer learning techniques, we propose a subject transfer based canonical correlation analysis (stCCA) method which utilizes the knowledge within subject and between subjects, thus requiring few calibration data from a new subject. Results: The evaluation study on two SSVEP datasets (from Tsinghua and UCSD) shows that the stCCA method performs well with only a small amount of calibration data, providing an ITR at 198.18±59.12 (bits/min) with 9 calibration trials in the Tsinghua dataset and 111.04±57.24 (bits/min) with 3 trials in the UCSD dataset. Such performances are comparable to those from using the multi-stimulus CCA (msCCA) and the ensemble task-related component analysis (eTRCA) methods with the minimally required calibration data (i.e., at least 40 trials in the Tsinghua dataset and at least 12 trials in the UCSD dataset), respectively. Conclusion: Inter- and intra-subject transfer helps the recognition method achieve high ITR with extremely little calibration effort. Significance: The proposed approach saves much calibration effort without sacrificing the ITR, which would be significant for practical SSVEP-based BCIs." @default.
- W3080484934 created "2020-09-01" @default.
- W3080484934 creator A5006965196 @default.
- W3080484934 creator A5012122902 @default.
- W3080484934 creator A5022473278 @default.
- W3080484934 creator A5041586238 @default.
- W3080484934 creator A5042089544 @default.
- W3080484934 creator A5055443847 @default.
- W3080484934 creator A5070765845 @default.
- W3080484934 creator A5078046664 @default.
- W3080484934 creator A5079141229 @default.
- W3080484934 date "2020-10-01" @default.
- W3080484934 modified "2023-10-15" @default.
- W3080484934 title "Inter- and Intra-Subject Transfer Reduces Calibration Effort for High-Speed SSVEP-Based BCIs" @default.
- W3080484934 cites W1988951376 @default.
- W3080484934 cites W2004959199 @default.
- W3080484934 cites W2011402106 @default.
- W3080484934 cites W2041998778 @default.
- W3080484934 cites W2071573480 @default.
- W3080484934 cites W2096943734 @default.
- W3080484934 cites W2102837100 @default.
- W3080484934 cites W2105478324 @default.
- W3080484934 cites W2106006415 @default.
- W3080484934 cites W2108554060 @default.
- W3080484934 cites W2109008357 @default.
- W3080484934 cites W2115403315 @default.
- W3080484934 cites W2122838776 @default.
- W3080484934 cites W2126617441 @default.
- W3080484934 cites W2132876794 @default.
- W3080484934 cites W2143183535 @default.
- W3080484934 cites W2152119085 @default.
- W3080484934 cites W2154366912 @default.
- W3080484934 cites W2163939660 @default.
- W3080484934 cites W2165698076 @default.
- W3080484934 cites W2338492816 @default.
- W3080484934 cites W2553904372 @default.
- W3080484934 cites W2605492512 @default.
- W3080484934 cites W2632178625 @default.
- W3080484934 cites W2809115111 @default.
- W3080484934 cites W2898733749 @default.
- W3080484934 cites W2910722546 @default.
- W3080484934 cites W2946105889 @default.
- W3080484934 cites W3007062513 @default.
- W3080484934 cites W3149679044 @default.
- W3080484934 doi "https://doi.org/10.1109/tnsre.2020.3019276" @default.
- W3080484934 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32841119" @default.
- W3080484934 hasPublicationYear "2020" @default.
- W3080484934 type Work @default.
- W3080484934 sameAs 3080484934 @default.
- W3080484934 citedByCount "41" @default.
- W3080484934 countsByYear W30804849342020 @default.
- W3080484934 countsByYear W30804849342021 @default.
- W3080484934 countsByYear W30804849342022 @default.
- W3080484934 countsByYear W30804849342023 @default.
- W3080484934 crossrefType "journal-article" @default.
- W3080484934 hasAuthorship W3080484934A5006965196 @default.
- W3080484934 hasAuthorship W3080484934A5012122902 @default.
- W3080484934 hasAuthorship W3080484934A5022473278 @default.
- W3080484934 hasAuthorship W3080484934A5041586238 @default.
- W3080484934 hasAuthorship W3080484934A5042089544 @default.
- W3080484934 hasAuthorship W3080484934A5055443847 @default.
- W3080484934 hasAuthorship W3080484934A5070765845 @default.
- W3080484934 hasAuthorship W3080484934A5078046664 @default.
- W3080484934 hasAuthorship W3080484934A5079141229 @default.
- W3080484934 hasConcept C105795698 @default.
- W3080484934 hasConcept C118552586 @default.
- W3080484934 hasConcept C119857082 @default.
- W3080484934 hasConcept C150899416 @default.
- W3080484934 hasConcept C153180895 @default.
- W3080484934 hasConcept C154945302 @default.
- W3080484934 hasConcept C15744967 @default.
- W3080484934 hasConcept C165838908 @default.
- W3080484934 hasConcept C173201364 @default.
- W3080484934 hasConcept C173608175 @default.
- W3080484934 hasConcept C2776175482 @default.
- W3080484934 hasConcept C33923547 @default.
- W3080484934 hasConcept C41008148 @default.
- W3080484934 hasConcept C522805319 @default.
- W3080484934 hasConceptScore W3080484934C105795698 @default.
- W3080484934 hasConceptScore W3080484934C118552586 @default.
- W3080484934 hasConceptScore W3080484934C119857082 @default.
- W3080484934 hasConceptScore W3080484934C150899416 @default.
- W3080484934 hasConceptScore W3080484934C153180895 @default.
- W3080484934 hasConceptScore W3080484934C154945302 @default.
- W3080484934 hasConceptScore W3080484934C15744967 @default.
- W3080484934 hasConceptScore W3080484934C165838908 @default.
- W3080484934 hasConceptScore W3080484934C173201364 @default.
- W3080484934 hasConceptScore W3080484934C173608175 @default.
- W3080484934 hasConceptScore W3080484934C2776175482 @default.
- W3080484934 hasConceptScore W3080484934C33923547 @default.
- W3080484934 hasConceptScore W3080484934C41008148 @default.
- W3080484934 hasConceptScore W3080484934C522805319 @default.
- W3080484934 hasFunder F4320321001 @default.
- W3080484934 hasFunder F4320321655 @default.
- W3080484934 hasIssue "10" @default.
- W3080484934 hasLocation W30804849341 @default.
- W3080484934 hasOpenAccess W3080484934 @default.
- W3080484934 hasPrimaryLocation W30804849341 @default.