Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080508343> ?p ?o ?g. }
- W3080508343 endingPage "B1114" @default.
- W3080508343 startingPage "B1092" @default.
- W3080508343 abstract "Structural optimization searches for the optimal shape and topology of components such that specific physical quantities are optimized, for instance, the stability of the resulting structure. Problems involving multiple scales, i.e., structures on a microscopic and a macroscopic level, can be efficiently solved by homogenization-based two-scale approaches. In each optimization iteration, many computationally expensive tensors $E$ describing the macroscopic behavior of a given microstructure have to be calculated, implying that the solution of one optimization problem can take weeks. The computational complexity can be greatly reduced with surrogates $tilde{E}$ that are constructed in advance in an offline phase via interpolation and that can be reused for different scenarios. Three main issues arise in this context: First, the curse of dimensionality renders conventional interpolation schemes infeasible even for moderate dimensionalities $> 4$. Therefore, we use sparse grid interpolation combined with a novel problem-tailored boundary treatment to drastically reduce the necessary grid size with only slightly higher approximation errors. Second, common sparse grid bases are not continuously differentiable. Hierarchical B-splines achieve lower approximation errors and supply exact continuous gradients of $tilde{E}$, which enables gradient-based optimization without approximating gradients of $E$. Third, the interpolated tensors are usually required to be positive definite, which is not fulfilled by common interpolation methods. We are able to preserve positive definiteness of the interpolated tensors by interpolating Cholesky factors instead. Combining these three contributions allows computing optimized structures for two- and three-dimensional optimization scenarios with speedups of up to 86 when compared to non-surrogate-based solutions." @default.
- W3080508343 created "2020-09-01" @default.
- W3080508343 creator A5013459854 @default.
- W3080508343 creator A5020370241 @default.
- W3080508343 creator A5041326099 @default.
- W3080508343 creator A5045524879 @default.
- W3080508343 date "2020-01-01" @default.
- W3080508343 modified "2023-09-29" @default.
- W3080508343 title "Gradient-Based Two-Scale Topology Optimization With B-Splines on Sparse Grids" @default.
- W3080508343 cites W1970101292 @default.
- W3080508343 cites W1972453937 @default.
- W3080508343 cites W1984823519 @default.
- W3080508343 cites W1989201748 @default.
- W3080508343 cites W2009195758 @default.
- W3080508343 cites W2020204501 @default.
- W3080508343 cites W2022410676 @default.
- W3080508343 cites W2027239222 @default.
- W3080508343 cites W2037240691 @default.
- W3080508343 cites W2069697210 @default.
- W3080508343 cites W2069947935 @default.
- W3080508343 cites W2071344665 @default.
- W3080508343 cites W2074647935 @default.
- W3080508343 cites W2076231474 @default.
- W3080508343 cites W2077798044 @default.
- W3080508343 cites W2084277536 @default.
- W3080508343 cites W2100804804 @default.
- W3080508343 cites W2108154660 @default.
- W3080508343 cites W2110653497 @default.
- W3080508343 cites W2116334708 @default.
- W3080508343 cites W2119847696 @default.
- W3080508343 cites W2141919226 @default.
- W3080508343 cites W2170743702 @default.
- W3080508343 cites W2333053272 @default.
- W3080508343 cites W2465643060 @default.
- W3080508343 cites W2611741623 @default.
- W3080508343 cites W2793241137 @default.
- W3080508343 cites W2888309181 @default.
- W3080508343 cites W2978906913 @default.
- W3080508343 cites W4255975175 @default.
- W3080508343 doi "https://doi.org/10.1137/19m128822x" @default.
- W3080508343 hasPublicationYear "2020" @default.
- W3080508343 type Work @default.
- W3080508343 sameAs 3080508343 @default.
- W3080508343 citedByCount "3" @default.
- W3080508343 countsByYear W30805083432023 @default.
- W3080508343 crossrefType "journal-article" @default.
- W3080508343 hasAuthorship W3080508343A5013459854 @default.
- W3080508343 hasAuthorship W3080508343A5020370241 @default.
- W3080508343 hasAuthorship W3080508343A5041326099 @default.
- W3080508343 hasAuthorship W3080508343A5045524879 @default.
- W3080508343 hasConcept C105795698 @default.
- W3080508343 hasConcept C111030470 @default.
- W3080508343 hasConcept C11413529 @default.
- W3080508343 hasConcept C121332964 @default.
- W3080508343 hasConcept C121684516 @default.
- W3080508343 hasConcept C126255220 @default.
- W3080508343 hasConcept C130217890 @default.
- W3080508343 hasConcept C137800194 @default.
- W3080508343 hasConcept C137836250 @default.
- W3080508343 hasConcept C151730666 @default.
- W3080508343 hasConcept C156439662 @default.
- W3080508343 hasConcept C158693339 @default.
- W3080508343 hasConcept C187691185 @default.
- W3080508343 hasConcept C18903297 @default.
- W3080508343 hasConcept C2524010 @default.
- W3080508343 hasConcept C2778265155 @default.
- W3080508343 hasConcept C2778722038 @default.
- W3080508343 hasConcept C2779343474 @default.
- W3080508343 hasConcept C28826006 @default.
- W3080508343 hasConcept C33923547 @default.
- W3080508343 hasConcept C34727166 @default.
- W3080508343 hasConcept C41008148 @default.
- W3080508343 hasConcept C49712288 @default.
- W3080508343 hasConcept C502989409 @default.
- W3080508343 hasConcept C62520636 @default.
- W3080508343 hasConcept C86803240 @default.
- W3080508343 hasConceptScore W3080508343C105795698 @default.
- W3080508343 hasConceptScore W3080508343C111030470 @default.
- W3080508343 hasConceptScore W3080508343C11413529 @default.
- W3080508343 hasConceptScore W3080508343C121332964 @default.
- W3080508343 hasConceptScore W3080508343C121684516 @default.
- W3080508343 hasConceptScore W3080508343C126255220 @default.
- W3080508343 hasConceptScore W3080508343C130217890 @default.
- W3080508343 hasConceptScore W3080508343C137800194 @default.
- W3080508343 hasConceptScore W3080508343C137836250 @default.
- W3080508343 hasConceptScore W3080508343C151730666 @default.
- W3080508343 hasConceptScore W3080508343C156439662 @default.
- W3080508343 hasConceptScore W3080508343C158693339 @default.
- W3080508343 hasConceptScore W3080508343C187691185 @default.
- W3080508343 hasConceptScore W3080508343C18903297 @default.
- W3080508343 hasConceptScore W3080508343C2524010 @default.
- W3080508343 hasConceptScore W3080508343C2778265155 @default.
- W3080508343 hasConceptScore W3080508343C2778722038 @default.
- W3080508343 hasConceptScore W3080508343C2779343474 @default.
- W3080508343 hasConceptScore W3080508343C28826006 @default.
- W3080508343 hasConceptScore W3080508343C33923547 @default.
- W3080508343 hasConceptScore W3080508343C34727166 @default.
- W3080508343 hasConceptScore W3080508343C41008148 @default.