Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080508714> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3080508714 endingPage "1907" @default.
- W3080508714 startingPage "1894" @default.
- W3080508714 abstract "Several studies suggest that the evaluation of left atrial (LA) fibrosis is a relevant information for the assessment of the appropriate strategy in catheter ablation in atrial fibrillation (AF). Late gadolinium enhanced (LGE) cardiac magnetic resonance imaging (MRI) is a non-invasive technique, which might be employed for the non-invasive quantification of LA myocardial fibrotic tissue in patients with AF. Nowadays, the analysis of LGE MRI relies on manual tracing of LA boundaries and this procedure is time-consuming and prone to high inter-observer variability given the different degrees of observers' experience, LA wall thickness and data resolution. Therefore, an automated segmentation approach of the atrial cavity for the quantification of scar tissue would be highly desirable.This study focuses on the design of a fully automated LGE MRI segmentation pipeline which includes a convolutional neural network (CNN) based on the successful architecture U-Net. The CNN was trained, validated and tested end-to-end with the data available from the Statistical Atlases and Computational Modelling of the Heart 2018 Atrial Segmentation Challenge (100 cardiac data). Two different approaches were tested: using both stacks of 2-D axial slices and using 3-D data (with the appropriate changes in the baseline architecture). In the latter approach, thanks to the 3-D convolution operator, all the information underlying 3-D data can be exploited. Once the training was completed using 80 cardiac data, a post-processing step was applied on 20 predicted segmentations belonging to the test set.By applying the 2-D and 3-D approaches, average Dice coefficient and mean Hausdorff distances were 0.896, 0.914, and 8.98 mm, 8.34 mm, respectively. Volumes of the anatomical LA meshes from the automated analysis were highly correlated with the volumes from ground truth [2-D: r=0.978, y=0.94x+0.07, bias=3.5 ml (5.6%), SD=5.3 mL (8.5%); 3-D: r=0.982, y=0.92x+2.9, bias=2.1 mL (3.5%), SD=5.2 mL (8.4%)].These results suggest the proposed approach is feasible and provides accurate results. Despite the increase of the number of trainable parameters, the proposed 3-D CNN learns better features leading to higher performance, feasible for a real clinical application." @default.
- W3080508714 created "2020-09-01" @default.
- W3080508714 creator A5015267765 @default.
- W3080508714 creator A5031714272 @default.
- W3080508714 creator A5060301654 @default.
- W3080508714 creator A5062279764 @default.
- W3080508714 creator A5084926128 @default.
- W3080508714 date "2020-10-01" @default.
- W3080508714 modified "2023-10-16" @default.
- W3080508714 title "A fully automated left atrium segmentation approach from late gadolinium enhanced magnetic resonance imaging based on a convolutional neural network" @default.
- W3080508714 cites W109871117 @default.
- W3080508714 cites W1850125129 @default.
- W3080508714 cites W1921280435 @default.
- W3080508714 cites W1974179522 @default.
- W3080508714 cites W1988911499 @default.
- W3080508714 cites W2003590746 @default.
- W3080508714 cites W2024095678 @default.
- W3080508714 cites W2027773544 @default.
- W3080508714 cites W2107924998 @default.
- W3080508714 cites W2114775432 @default.
- W3080508714 cites W2135738182 @default.
- W3080508714 cites W2150866578 @default.
- W3080508714 cites W2236355562 @default.
- W3080508714 cites W2313203550 @default.
- W3080508714 cites W2618276716 @default.
- W3080508714 cites W2757298412 @default.
- W3080508714 cites W2884964528 @default.
- W3080508714 cites W2889158831 @default.
- W3080508714 cites W2902154261 @default.
- W3080508714 cites W2906598409 @default.
- W3080508714 cites W2977841542 @default.
- W3080508714 doi "https://doi.org/10.21037/qims-20-168" @default.
- W3080508714 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7495320" @default.
- W3080508714 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33014723" @default.
- W3080508714 hasPublicationYear "2020" @default.
- W3080508714 type Work @default.
- W3080508714 sameAs 3080508714 @default.
- W3080508714 citedByCount "12" @default.
- W3080508714 countsByYear W30805087142020 @default.
- W3080508714 countsByYear W30805087142021 @default.
- W3080508714 countsByYear W30805087142022 @default.
- W3080508714 countsByYear W30805087142023 @default.
- W3080508714 crossrefType "journal-article" @default.
- W3080508714 hasAuthorship W3080508714A5015267765 @default.
- W3080508714 hasAuthorship W3080508714A5031714272 @default.
- W3080508714 hasAuthorship W3080508714A5060301654 @default.
- W3080508714 hasAuthorship W3080508714A5062279764 @default.
- W3080508714 hasAuthorship W3080508714A5084926128 @default.
- W3080508714 hasBestOaLocation W30805087141 @default.
- W3080508714 hasConcept C126838900 @default.
- W3080508714 hasConcept C143409427 @default.
- W3080508714 hasConcept C153180895 @default.
- W3080508714 hasConcept C154945302 @default.
- W3080508714 hasConcept C164705383 @default.
- W3080508714 hasConcept C2776008845 @default.
- W3080508714 hasConcept C2779161974 @default.
- W3080508714 hasConcept C41008148 @default.
- W3080508714 hasConcept C58489278 @default.
- W3080508714 hasConcept C71924100 @default.
- W3080508714 hasConcept C81363708 @default.
- W3080508714 hasConcept C89600930 @default.
- W3080508714 hasConceptScore W3080508714C126838900 @default.
- W3080508714 hasConceptScore W3080508714C143409427 @default.
- W3080508714 hasConceptScore W3080508714C153180895 @default.
- W3080508714 hasConceptScore W3080508714C154945302 @default.
- W3080508714 hasConceptScore W3080508714C164705383 @default.
- W3080508714 hasConceptScore W3080508714C2776008845 @default.
- W3080508714 hasConceptScore W3080508714C2779161974 @default.
- W3080508714 hasConceptScore W3080508714C41008148 @default.
- W3080508714 hasConceptScore W3080508714C58489278 @default.
- W3080508714 hasConceptScore W3080508714C71924100 @default.
- W3080508714 hasConceptScore W3080508714C81363708 @default.
- W3080508714 hasConceptScore W3080508714C89600930 @default.
- W3080508714 hasIssue "10" @default.
- W3080508714 hasLocation W30805087141 @default.
- W3080508714 hasLocation W30805087142 @default.
- W3080508714 hasLocation W30805087143 @default.
- W3080508714 hasOpenAccess W3080508714 @default.
- W3080508714 hasPrimaryLocation W30805087141 @default.
- W3080508714 hasRelatedWork W1967841144 @default.
- W3080508714 hasRelatedWork W2319489406 @default.
- W3080508714 hasRelatedWork W2748952813 @default.
- W3080508714 hasRelatedWork W2767651786 @default.
- W3080508714 hasRelatedWork W2899084033 @default.
- W3080508714 hasRelatedWork W2912288872 @default.
- W3080508714 hasRelatedWork W4200528772 @default.
- W3080508714 hasRelatedWork W4286545890 @default.
- W3080508714 hasRelatedWork W4297907297 @default.
- W3080508714 hasRelatedWork W564581980 @default.
- W3080508714 hasVolume "10" @default.
- W3080508714 isParatext "false" @default.
- W3080508714 isRetracted "false" @default.
- W3080508714 magId "3080508714" @default.
- W3080508714 workType "article" @default.