Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080519783> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W3080519783 abstract "The unsupervised variational image decomposition (uVID) algorithm developed in our group allows for automatic, accurate and robust preprocessing of diverse fringe patterns. Classical VID was initially used for image denoising. Its tailoring for fringe pattern preprocessing was justified by clear advantage over other methods (e.g. Wiener or Gauss filters) in maintaining sharp edges and details of the image. Historically first fringe pattern dedicated three-component variational image decomposition model assumed the use of the shearlet algorithm to separate the information component (fringes) and noise and the Chambolle projection algorithm to separate the fringes and background. We noticed that this model is computationally complicated and the result strongly depends on the values of the algorithm’s internal parameters, to be set manually. The uVID automatically introduces the parameters and stopping criterion for Chambolle’s iterative projection algorithm. Nevertheless, determining the stopping criterion in each iteration is a severely time-consuming process, which is particularly important given the fact that in many cases thousands of iterations have to be calculated in order to obtain a satisfactory fringe pattern decomposition result. Therefore, the idea of using machine learning algorithms to classify fringe patterns according to the required number of Chambolle projection iterations has emerged. Thus, it is no longer required to determine the value of the stopping criterion in every iteration, but only in the area of the predetermined number of iterations. We showed that the calculation time is reduced on average by half by employing the machine-learning based acceleration. This way we made a progress in developing uVID algorithm features for real-time studies of dynamic phenomena, i.e., biological cell development investigated by fringe-based bio-interferometry methods." @default.
- W3080519783 created "2020-09-01" @default.
- W3080519783 creator A5072162131 @default.
- W3080519783 creator A5076845708 @default.
- W3080519783 creator A5083367701 @default.
- W3080519783 date "2020-08-21" @default.
- W3080519783 modified "2023-09-26" @default.
- W3080519783 title "Machine-learning based fast unsupervised variational image decomposition for fringe pattern analysis" @default.
- W3080519783 doi "https://doi.org/10.1117/12.2568503" @default.
- W3080519783 hasPublicationYear "2020" @default.
- W3080519783 type Work @default.
- W3080519783 sameAs 3080519783 @default.
- W3080519783 citedByCount "0" @default.
- W3080519783 crossrefType "proceedings-article" @default.
- W3080519783 hasAuthorship W3080519783A5072162131 @default.
- W3080519783 hasAuthorship W3080519783A5076845708 @default.
- W3080519783 hasAuthorship W3080519783A5083367701 @default.
- W3080519783 hasConcept C11413529 @default.
- W3080519783 hasConcept C115961682 @default.
- W3080519783 hasConcept C117896860 @default.
- W3080519783 hasConcept C121332964 @default.
- W3080519783 hasConcept C154945302 @default.
- W3080519783 hasConcept C33923547 @default.
- W3080519783 hasConcept C34736171 @default.
- W3080519783 hasConcept C41008148 @default.
- W3080519783 hasConcept C57493831 @default.
- W3080519783 hasConcept C74650414 @default.
- W3080519783 hasConcept C9417928 @default.
- W3080519783 hasConcept C99498987 @default.
- W3080519783 hasConceptScore W3080519783C11413529 @default.
- W3080519783 hasConceptScore W3080519783C115961682 @default.
- W3080519783 hasConceptScore W3080519783C117896860 @default.
- W3080519783 hasConceptScore W3080519783C121332964 @default.
- W3080519783 hasConceptScore W3080519783C154945302 @default.
- W3080519783 hasConceptScore W3080519783C33923547 @default.
- W3080519783 hasConceptScore W3080519783C34736171 @default.
- W3080519783 hasConceptScore W3080519783C41008148 @default.
- W3080519783 hasConceptScore W3080519783C57493831 @default.
- W3080519783 hasConceptScore W3080519783C74650414 @default.
- W3080519783 hasConceptScore W3080519783C9417928 @default.
- W3080519783 hasConceptScore W3080519783C99498987 @default.
- W3080519783 hasLocation W30805197831 @default.
- W3080519783 hasOpenAccess W3080519783 @default.
- W3080519783 hasPrimaryLocation W30805197831 @default.
- W3080519783 hasRelatedWork W2123594560 @default.
- W3080519783 hasRelatedWork W2235797036 @default.
- W3080519783 hasRelatedWork W2356041771 @default.
- W3080519783 hasRelatedWork W2990599886 @default.
- W3080519783 hasRelatedWork W3088103093 @default.
- W3080519783 hasRelatedWork W3206330477 @default.
- W3080519783 hasRelatedWork W4200280566 @default.
- W3080519783 hasRelatedWork W4226285292 @default.
- W3080519783 hasRelatedWork W4294691190 @default.
- W3080519783 hasRelatedWork W823110065 @default.
- W3080519783 isParatext "false" @default.
- W3080519783 isRetracted "false" @default.
- W3080519783 magId "3080519783" @default.
- W3080519783 workType "article" @default.