Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080532425> ?p ?o ?g. }
- W3080532425 abstract "Understanding data and reaching valid conclusions are of paramount importance in the present era of big data. Machine learning and probability theory methods have widespread application for this purpose in different fields. One critically important yet less explored aspect is how data and model uncertainties are captured and analyzed. Proper quantification of uncertainty provides valuable information for optimal decision making. This paper reviewed related studies conducted in the last 30 years (from 1991 to 2020) in handling uncertainties in medical data using probability theory and machine learning techniques. Medical data is more prone to uncertainty due to the presence of noise in the data. So, it is very important to have clean medical data without any noise to get accurate diagnosis. The sources of noise in the medical data need to be known to address this issue. Based on the medical data obtained by the physician, diagnosis of disease, and treatment plan are prescribed. Hence, the uncertainty is growing in healthcare and there is limited knowledge to address these problems. We have little knowledge about the optimal treatment methods as there are many sources of uncertainty in medical science. Our findings indicate that there are few challenges to be addressed in handling the uncertainty in medical raw data and new models. In this work, we have summarized various methods employed to overcome this problem. Nowadays, application of novel deep learning techniques to deal such uncertainties have significantly increased." @default.
- W3080532425 created "2020-09-01" @default.
- W3080532425 creator A5006690103 @default.
- W3080532425 creator A5008811472 @default.
- W3080532425 creator A5013978386 @default.
- W3080532425 creator A5014000715 @default.
- W3080532425 creator A5015293969 @default.
- W3080532425 creator A5016960268 @default.
- W3080532425 creator A5021720735 @default.
- W3080532425 creator A5029791697 @default.
- W3080532425 creator A5041727019 @default.
- W3080532425 creator A5057869229 @default.
- W3080532425 creator A5059557438 @default.
- W3080532425 creator A5062872897 @default.
- W3080532425 creator A5072373139 @default.
- W3080532425 creator A5076824950 @default.
- W3080532425 creator A5083567791 @default.
- W3080532425 date "2020-08-23" @default.
- W3080532425 modified "2023-09-27" @default.
- W3080532425 title "Handling of uncertainty in medical data using machine learning and probability theory techniques: A review of 30 years (1991-2020)" @default.
- W3080532425 cites W1974524628 @default.
- W3080532425 cites W2028918272 @default.
- W3080532425 cites W2054357337 @default.
- W3080532425 cites W2058755574 @default.
- W3080532425 cites W2065750810 @default.
- W3080532425 cites W2077859352 @default.
- W3080532425 cites W2079247656 @default.
- W3080532425 cites W2103328396 @default.
- W3080532425 cites W2125855426 @default.
- W3080532425 cites W2154042238 @default.
- W3080532425 cites W2155834777 @default.
- W3080532425 cites W2464151550 @default.
- W3080532425 cites W2515753980 @default.
- W3080532425 cites W2617062309 @default.
- W3080532425 cites W2619890685 @default.
- W3080532425 cites W2739572782 @default.
- W3080532425 cites W2792666127 @default.
- W3080532425 cites W2810197705 @default.
- W3080532425 cites W2893509640 @default.
- W3080532425 cites W2905245972 @default.
- W3080532425 cites W2912746303 @default.
- W3080532425 cites W2921363148 @default.
- W3080532425 cites W2963058055 @default.
- W3080532425 cites W2969661233 @default.
- W3080532425 cites W2972226736 @default.
- W3080532425 cites W2972450802 @default.
- W3080532425 cites W2974463271 @default.
- W3080532425 cites W2989215101 @default.
- W3080532425 cites W2995233166 @default.
- W3080532425 cites W2996167815 @default.
- W3080532425 cites W2999701149 @default.
- W3080532425 cites W3000606108 @default.
- W3080532425 cites W3001177805 @default.
- W3080532425 cites W3005077487 @default.
- W3080532425 cites W3011057532 @default.
- W3080532425 cites W3012416991 @default.
- W3080532425 cites W3045236836 @default.
- W3080532425 cites W3045704945 @default.
- W3080532425 cites W601603264 @default.
- W3080532425 hasPublicationYear "2020" @default.
- W3080532425 type Work @default.
- W3080532425 sameAs 3080532425 @default.
- W3080532425 citedByCount "1" @default.
- W3080532425 countsByYear W30805324252021 @default.
- W3080532425 crossrefType "posted-content" @default.
- W3080532425 hasAuthorship W3080532425A5006690103 @default.
- W3080532425 hasAuthorship W3080532425A5008811472 @default.
- W3080532425 hasAuthorship W3080532425A5013978386 @default.
- W3080532425 hasAuthorship W3080532425A5014000715 @default.
- W3080532425 hasAuthorship W3080532425A5015293969 @default.
- W3080532425 hasAuthorship W3080532425A5016960268 @default.
- W3080532425 hasAuthorship W3080532425A5021720735 @default.
- W3080532425 hasAuthorship W3080532425A5029791697 @default.
- W3080532425 hasAuthorship W3080532425A5041727019 @default.
- W3080532425 hasAuthorship W3080532425A5057869229 @default.
- W3080532425 hasAuthorship W3080532425A5059557438 @default.
- W3080532425 hasAuthorship W3080532425A5062872897 @default.
- W3080532425 hasAuthorship W3080532425A5072373139 @default.
- W3080532425 hasAuthorship W3080532425A5076824950 @default.
- W3080532425 hasAuthorship W3080532425A5083567791 @default.
- W3080532425 hasConcept C115961682 @default.
- W3080532425 hasConcept C119857082 @default.
- W3080532425 hasConcept C124101348 @default.
- W3080532425 hasConcept C132964779 @default.
- W3080532425 hasConcept C154945302 @default.
- W3080532425 hasConcept C166957645 @default.
- W3080532425 hasConcept C199360897 @default.
- W3080532425 hasConcept C2522767166 @default.
- W3080532425 hasConcept C2776505523 @default.
- W3080532425 hasConcept C2781170535 @default.
- W3080532425 hasConcept C32230216 @default.
- W3080532425 hasConcept C41008148 @default.
- W3080532425 hasConcept C75684735 @default.
- W3080532425 hasConcept C95457728 @default.
- W3080532425 hasConcept C99498987 @default.
- W3080532425 hasConceptScore W3080532425C115961682 @default.
- W3080532425 hasConceptScore W3080532425C119857082 @default.
- W3080532425 hasConceptScore W3080532425C124101348 @default.
- W3080532425 hasConceptScore W3080532425C132964779 @default.
- W3080532425 hasConceptScore W3080532425C154945302 @default.