Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080540369> ?p ?o ?g. }
- W3080540369 abstract "In this manuscript, we develop multiple machine learning (ML) models to accelerate a scheme for parameterizing site-based models of exciton dynamics from all-atom configurations of condensed phase sexithiophene systems. This scheme encodes the details of a system’s specific molecular morphology in the correlated distributions of model parameters through the analysis of many single-molecule excited-state electronic-structure calculations. These calculations yield excitation energies for each molecule in the system and the network of pair-wise intermolecular electronic couplings. Here, we demonstrate that the excitation energies can be accurately predicted using a kernel ridge regression (KRR) model with Coulomb matrix featurization. We present two ML models for predicting intermolecular couplings. The first one utilizes a deep neural network and bi-molecular featurization to predict the coupling directly, which we find to perform poorly. The second one utilizes a KRR model to predict unimolecular transition densities, which can subsequently be analyzed to compute the coupling. We find that the latter approach performs excellently, indicating that an effective, generalizable strategy for predicting simple bimolecular properties is through the indirect application of ML to predict higher-order unimolecular properties. Such an approach necessitates a much smaller feature space and can incorporate the insight of well-established molecular physics." @default.
- W3080540369 created "2020-09-01" @default.
- W3080540369 creator A5014709273 @default.
- W3080540369 creator A5025732107 @default.
- W3080540369 creator A5037766138 @default.
- W3080540369 creator A5074482769 @default.
- W3080540369 creator A5087104793 @default.
- W3080540369 date "2020-08-20" @default.
- W3080540369 modified "2023-09-30" @default.
- W3080540369 title "Machine learning Frenkel Hamiltonian parameters to accelerate simulations of exciton dynamics" @default.
- W3080540369 cites W1584846110 @default.
- W3080540369 cites W1822301074 @default.
- W3080540369 cites W1966398746 @default.
- W3080540369 cites W1967414202 @default.
- W3080540369 cites W1971044734 @default.
- W3080540369 cites W1976858076 @default.
- W3080540369 cites W1983544275 @default.
- W3080540369 cites W1987797498 @default.
- W3080540369 cites W1991794210 @default.
- W3080540369 cites W1998260904 @default.
- W3080540369 cites W1998520078 @default.
- W3080540369 cites W1999311751 @default.
- W3080540369 cites W2007159325 @default.
- W3080540369 cites W2012773107 @default.
- W3080540369 cites W2015381186 @default.
- W3080540369 cites W2016648941 @default.
- W3080540369 cites W2017196167 @default.
- W3080540369 cites W2023957325 @default.
- W3080540369 cites W2024671299 @default.
- W3080540369 cites W2025444507 @default.
- W3080540369 cites W2026498919 @default.
- W3080540369 cites W2028880296 @default.
- W3080540369 cites W2029683673 @default.
- W3080540369 cites W2030971064 @default.
- W3080540369 cites W2034078366 @default.
- W3080540369 cites W2051381895 @default.
- W3080540369 cites W2062852634 @default.
- W3080540369 cites W2064338951 @default.
- W3080540369 cites W2079391392 @default.
- W3080540369 cites W2081620547 @default.
- W3080540369 cites W2104489082 @default.
- W3080540369 cites W2121708868 @default.
- W3080540369 cites W2123188073 @default.
- W3080540369 cites W2123215255 @default.
- W3080540369 cites W2140962873 @default.
- W3080540369 cites W2142584934 @default.
- W3080540369 cites W2160091993 @default.
- W3080540369 cites W2254551221 @default.
- W3080540369 cites W2312239102 @default.
- W3080540369 cites W2312369104 @default.
- W3080540369 cites W2320783822 @default.
- W3080540369 cites W2321111305 @default.
- W3080540369 cites W2324629656 @default.
- W3080540369 cites W2331204442 @default.
- W3080540369 cites W2478294658 @default.
- W3080540369 cites W2547803392 @default.
- W3080540369 cites W2593376768 @default.
- W3080540369 cites W2624924269 @default.
- W3080540369 cites W2753745607 @default.
- W3080540369 cites W2756519801 @default.
- W3080540369 cites W2778051509 @default.
- W3080540369 cites W2785813126 @default.
- W3080540369 cites W2806843381 @default.
- W3080540369 cites W2889632381 @default.
- W3080540369 cites W2889703828 @default.
- W3080540369 cites W2889725665 @default.
- W3080540369 cites W2890026727 @default.
- W3080540369 cites W2900369799 @default.
- W3080540369 cites W2903291431 @default.
- W3080540369 cites W2959391278 @default.
- W3080540369 cites W2965153519 @default.
- W3080540369 cites W2969286367 @default.
- W3080540369 cites W2984234582 @default.
- W3080540369 cites W2994756795 @default.
- W3080540369 cites W2997591727 @default.
- W3080540369 cites W2999059458 @default.
- W3080540369 cites W3010488723 @default.
- W3080540369 cites W3012193033 @default.
- W3080540369 cites W3025104221 @default.
- W3080540369 cites W3099950071 @default.
- W3080540369 cites W4234180931 @default.
- W3080540369 cites W4239132388 @default.
- W3080540369 doi "https://doi.org/10.1063/5.0016009" @default.
- W3080540369 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32828098" @default.
- W3080540369 hasPublicationYear "2020" @default.
- W3080540369 type Work @default.
- W3080540369 sameAs 3080540369 @default.
- W3080540369 citedByCount "20" @default.
- W3080540369 countsByYear W30805403692020 @default.
- W3080540369 countsByYear W30805403692021 @default.
- W3080540369 countsByYear W30805403692022 @default.
- W3080540369 countsByYear W30805403692023 @default.
- W3080540369 crossrefType "journal-article" @default.
- W3080540369 hasAuthorship W3080540369A5014709273 @default.
- W3080540369 hasAuthorship W3080540369A5025732107 @default.
- W3080540369 hasAuthorship W3080540369A5037766138 @default.
- W3080540369 hasAuthorship W3080540369A5074482769 @default.
- W3080540369 hasAuthorship W3080540369A5087104793 @default.
- W3080540369 hasBestOaLocation W30805403691 @default.
- W3080540369 hasConcept C121332964 @default.