Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080665034> ?p ?o ?g. }
- W3080665034 endingPage "5410" @default.
- W3080665034 startingPage "5401" @default.
- W3080665034 abstract "Abstract When choosing experimental conditions, Bayesian statistical tools can predict the experimental choices which will yield the highest information gain. Experimental choices could be temperature, pressure, reaction time, number of measurements, reactor volume, etc.. Three example analyses are presented here, each using the software Chemical Kinetics Parameter Estimation and Uncertainty Quantification (CheKiPEUQ). Information gain is a measure of reduction of uncertainty in a model's parameters. The three chemical system examples presented each illustrate Bayesian Design of Experiments using information gain. In the first chemical example, temperature selection impacts the information gain for the free energy of reaction in a two‐component equilibrium reaction. In the second example, temperature and pressure are explored for a competitive adsorption Langmuir replacement reaction system. The third example is a catalytic membrane reactor which is a culmination of the previous examples. The catalytic membrane reactor has a complex and nonlinear response in the observables which is solved by numerical evaluation. In the three examples, the experimental conditions are treated as design variables for maximizing information gain." @default.
- W3080665034 created "2020-09-01" @default.
- W3080665034 creator A5009461193 @default.
- W3080665034 creator A5060805106 @default.
- W3080665034 creator A5084604424 @default.
- W3080665034 date "2020-09-17" @default.
- W3080665034 modified "2023-10-16" @default.
- W3080665034 title "CheKiPEUQ Intro 2: Harnessing Uncertainties from Data Sets, Bayesian Design of Experiments in Chemical Kinetics**" @default.
- W3080665034 cites W1563490911 @default.
- W3080665034 cites W1963696519 @default.
- W3080665034 cites W1965555277 @default.
- W3080665034 cites W1970673798 @default.
- W3080665034 cites W1973333099 @default.
- W3080665034 cites W1979379839 @default.
- W3080665034 cites W1986229972 @default.
- W3080665034 cites W2003916101 @default.
- W3080665034 cites W2011440946 @default.
- W3080665034 cites W2014018052 @default.
- W3080665034 cites W2022130098 @default.
- W3080665034 cites W2025212823 @default.
- W3080665034 cites W2045958967 @default.
- W3080665034 cites W2048074758 @default.
- W3080665034 cites W2056146361 @default.
- W3080665034 cites W2056207828 @default.
- W3080665034 cites W2072208144 @default.
- W3080665034 cites W2285075528 @default.
- W3080665034 cites W2319807863 @default.
- W3080665034 cites W2321539209 @default.
- W3080665034 cites W2342848081 @default.
- W3080665034 cites W2492754248 @default.
- W3080665034 cites W2557357399 @default.
- W3080665034 cites W2593855134 @default.
- W3080665034 cites W2610973179 @default.
- W3080665034 cites W2625365892 @default.
- W3080665034 cites W2730770201 @default.
- W3080665034 cites W2764184599 @default.
- W3080665034 cites W2782815469 @default.
- W3080665034 cites W2808740881 @default.
- W3080665034 cites W2899012830 @default.
- W3080665034 cites W2899587329 @default.
- W3080665034 cites W2921431476 @default.
- W3080665034 cites W2939663976 @default.
- W3080665034 cites W2945964866 @default.
- W3080665034 cites W2952655500 @default.
- W3080665034 cites W2963688427 @default.
- W3080665034 cites W2965447776 @default.
- W3080665034 cites W3008669240 @default.
- W3080665034 cites W3011878799 @default.
- W3080665034 cites W3030876021 @default.
- W3080665034 cites W3099937095 @default.
- W3080665034 cites W4249753629 @default.
- W3080665034 cites W874349657 @default.
- W3080665034 doi "https://doi.org/10.1002/cctc.202000976" @default.
- W3080665034 hasPublicationYear "2020" @default.
- W3080665034 type Work @default.
- W3080665034 sameAs 3080665034 @default.
- W3080665034 citedByCount "14" @default.
- W3080665034 countsByYear W30806650342020 @default.
- W3080665034 countsByYear W30806650342021 @default.
- W3080665034 countsByYear W30806650342022 @default.
- W3080665034 countsByYear W30806650342023 @default.
- W3080665034 crossrefType "journal-article" @default.
- W3080665034 hasAuthorship W3080665034A5009461193 @default.
- W3080665034 hasAuthorship W3080665034A5060805106 @default.
- W3080665034 hasAuthorship W3080665034A5084604424 @default.
- W3080665034 hasBestOaLocation W30806650343 @default.
- W3080665034 hasConcept C105795698 @default.
- W3080665034 hasConcept C107673813 @default.
- W3080665034 hasConcept C121332964 @default.
- W3080665034 hasConcept C127413603 @default.
- W3080665034 hasConcept C148898269 @default.
- W3080665034 hasConcept C185592680 @default.
- W3080665034 hasConcept C186060115 @default.
- W3080665034 hasConcept C21880701 @default.
- W3080665034 hasConcept C33923547 @default.
- W3080665034 hasConcept C36663273 @default.
- W3080665034 hasConcept C41008148 @default.
- W3080665034 hasConcept C62520636 @default.
- W3080665034 hasConcept C86803240 @default.
- W3080665034 hasConcept C97355855 @default.
- W3080665034 hasConceptScore W3080665034C105795698 @default.
- W3080665034 hasConceptScore W3080665034C107673813 @default.
- W3080665034 hasConceptScore W3080665034C121332964 @default.
- W3080665034 hasConceptScore W3080665034C127413603 @default.
- W3080665034 hasConceptScore W3080665034C148898269 @default.
- W3080665034 hasConceptScore W3080665034C185592680 @default.
- W3080665034 hasConceptScore W3080665034C186060115 @default.
- W3080665034 hasConceptScore W3080665034C21880701 @default.
- W3080665034 hasConceptScore W3080665034C33923547 @default.
- W3080665034 hasConceptScore W3080665034C36663273 @default.
- W3080665034 hasConceptScore W3080665034C41008148 @default.
- W3080665034 hasConceptScore W3080665034C62520636 @default.
- W3080665034 hasConceptScore W3080665034C86803240 @default.
- W3080665034 hasConceptScore W3080665034C97355855 @default.
- W3080665034 hasFunder F4320337480 @default.
- W3080665034 hasIssue "21" @default.
- W3080665034 hasLocation W30806650341 @default.
- W3080665034 hasLocation W30806650342 @default.