Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080716055> ?p ?o ?g. }
- W3080716055 endingPage "4315" @default.
- W3080716055 startingPage "4301" @default.
- W3080716055 abstract "In this paper, a novel system architecture including a massive multi-input multi-output (MIMO) or a reconfigurable intelligent surface (RIS) and multiple autonomous vehicles is considered in vehicle location systems. The location parameters of autonomous vehicles can be estimated based on the deep unfolding technique, which is a recent advance of deep learning. Traditional vehicle location methods such as the global position system (GPS) can only locate the target vehicles with relatively low accuracy. The super resolution cannot be achieved when two vehicles are too close, which means that the safety incidents exist when autonomous vehicles are deployed in future intelligent transportation systems (ITS). Different from the existing massive MIMO or RIS equipped with a regular array such as uniform rectangular array (URA) and uniform circular array (UCA), we exploit a massive MIMO or a RIS equipped with a conformal array extended from traditional regular array. First, the rotation from the global coordinate system to the local coordinate system is achieved based on geometric algebra. Second, 2D-DOA estimation of autonomous vehicles is modeled as a novel block sparse recovery problem. Third, the deep network architecture SBLNet is implemented to learn the nonlinear characteristic from the DOAs of autonomous vehicles and the data received by massive MIMOs or RISs. The 2D-DOA and polarization parameters can be estimated based on SBLNet with relatively low computational complexity. Simulation results demonstrate that SBLNet performs better than the state-of-the-art methods in terms of estimation accuracy and successful probability. The SBLNet is also suitable for the practical scenario considering fast moving autonomous vehicles, while, the traditional block sparse recovery methods fail in this complex scenario." @default.
- W3080716055 created "2020-09-01" @default.
- W3080716055 creator A5026853484 @default.
- W3080716055 creator A5029057014 @default.
- W3080716055 creator A5034529593 @default.
- W3080716055 creator A5067984316 @default.
- W3080716055 creator A5076776322 @default.
- W3080716055 date "2021-07-01" @default.
- W3080716055 modified "2023-10-17" @default.
- W3080716055 title "Deep Learning Based Autonomous Vehicle Super Resolution DOA Estimation for Safety Driving" @default.
- W3080716055 cites W1526635328 @default.
- W3080716055 cites W1544035235 @default.
- W3080716055 cites W1595823061 @default.
- W3080716055 cites W1965532943 @default.
- W3080716055 cites W1972147158 @default.
- W3080716055 cites W1980560153 @default.
- W3080716055 cites W2041243744 @default.
- W3080716055 cites W2071282831 @default.
- W3080716055 cites W2093169058 @default.
- W3080716055 cites W2094000586 @default.
- W3080716055 cites W2103519107 @default.
- W3080716055 cites W2127224001 @default.
- W3080716055 cites W2146000945 @default.
- W3080716055 cites W2152279006 @default.
- W3080716055 cites W2172135806 @default.
- W3080716055 cites W2294949633 @default.
- W3080716055 cites W2337281148 @default.
- W3080716055 cites W2469797310 @default.
- W3080716055 cites W2520558376 @default.
- W3080716055 cites W2525493422 @default.
- W3080716055 cites W2558896987 @default.
- W3080716055 cites W2586642235 @default.
- W3080716055 cites W2617923849 @default.
- W3080716055 cites W2619204584 @default.
- W3080716055 cites W2742426150 @default.
- W3080716055 cites W2755270477 @default.
- W3080716055 cites W2789390797 @default.
- W3080716055 cites W2791150001 @default.
- W3080716055 cites W2810871807 @default.
- W3080716055 cites W2896104397 @default.
- W3080716055 cites W2897361856 @default.
- W3080716055 cites W2903476751 @default.
- W3080716055 cites W2908941882 @default.
- W3080716055 cites W2921062571 @default.
- W3080716055 cites W2921479386 @default.
- W3080716055 cites W2950077417 @default.
- W3080716055 cites W2961840197 @default.
- W3080716055 cites W2969618511 @default.
- W3080716055 cites W2975221988 @default.
- W3080716055 cites W2978977033 @default.
- W3080716055 cites W2990747873 @default.
- W3080716055 cites W2996989685 @default.
- W3080716055 cites W2998711990 @default.
- W3080716055 cites W3007623567 @default.
- W3080716055 cites W3025220697 @default.
- W3080716055 cites W577697559 @default.
- W3080716055 doi "https://doi.org/10.1109/tits.2020.3009223" @default.
- W3080716055 hasPublicationYear "2021" @default.
- W3080716055 type Work @default.
- W3080716055 sameAs 3080716055 @default.
- W3080716055 citedByCount "52" @default.
- W3080716055 countsByYear W30807160552020 @default.
- W3080716055 countsByYear W30807160552021 @default.
- W3080716055 countsByYear W30807160552022 @default.
- W3080716055 countsByYear W30807160552023 @default.
- W3080716055 crossrefType "journal-article" @default.
- W3080716055 hasAuthorship W3080716055A5026853484 @default.
- W3080716055 hasAuthorship W3080716055A5029057014 @default.
- W3080716055 hasAuthorship W3080716055A5034529593 @default.
- W3080716055 hasAuthorship W3080716055A5067984316 @default.
- W3080716055 hasAuthorship W3080716055A5076776322 @default.
- W3080716055 hasConcept C10138342 @default.
- W3080716055 hasConcept C108583219 @default.
- W3080716055 hasConcept C127162648 @default.
- W3080716055 hasConcept C127413603 @default.
- W3080716055 hasConcept C154945302 @default.
- W3080716055 hasConcept C162324750 @default.
- W3080716055 hasConcept C198082294 @default.
- W3080716055 hasConcept C207987634 @default.
- W3080716055 hasConcept C2524010 @default.
- W3080716055 hasConcept C2777210771 @default.
- W3080716055 hasConcept C31972630 @default.
- W3080716055 hasConcept C33923547 @default.
- W3080716055 hasConcept C41008148 @default.
- W3080716055 hasConcept C50644808 @default.
- W3080716055 hasConcept C60229501 @default.
- W3080716055 hasConcept C76155785 @default.
- W3080716055 hasConcept C79403827 @default.
- W3080716055 hasConcept C80551277 @default.
- W3080716055 hasConceptScore W3080716055C10138342 @default.
- W3080716055 hasConceptScore W3080716055C108583219 @default.
- W3080716055 hasConceptScore W3080716055C127162648 @default.
- W3080716055 hasConceptScore W3080716055C127413603 @default.
- W3080716055 hasConceptScore W3080716055C154945302 @default.
- W3080716055 hasConceptScore W3080716055C162324750 @default.
- W3080716055 hasConceptScore W3080716055C198082294 @default.
- W3080716055 hasConceptScore W3080716055C207987634 @default.
- W3080716055 hasConceptScore W3080716055C2524010 @default.