Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080756487> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3080756487 abstract "In a wide range of social unrest events prediction, the dynamic graph convolutional network (DGCN) have been successfully leveraged to achieve reliable performance. The innovation of dynamic graph convolutional networks mainly focuses on capturing the temporal features of unrest events. Inspired by the dynamic graph convolutional network, we propose a new graph convolutional network model called Contextual Gated Graph Convolutional Network (CGGCN). We apply CGGCN to predict and analyze social unrest events. The CGGCN uses the contextual gated layer, which improves the layer-wise propagation rules of graph convolutional networks. The contextual gated layer can re-learn the keyword representation to capture the contextual semantic features of unrest events by using squeeze & excitation module. The principle of the squeeze & excitation module is to increase the weight of meaningful words for event prediction and suppress weaker ones. In this paper, we obtain historical texts including published news and short tweets related to social unrest events. Based on these historical texts data, the CGGCN can predict the occurrence of social unrest events. In addition, we propose a method for establishing the evolution graph of unrest events. In this way, we can use several core words to summarize the evolution of the event. Finally, we design experiments on the specific unrest events data sets. The experimental results show that the CGGCN leads by about 5% - 7% in the performance of prediction compared with other popular methods." @default.
- W3080756487 created "2020-09-01" @default.
- W3080756487 creator A5030424204 @default.
- W3080756487 creator A5050122606 @default.
- W3080756487 creator A5066158698 @default.
- W3080756487 creator A5075156923 @default.
- W3080756487 date "2020-07-01" @default.
- W3080756487 modified "2023-09-27" @default.
- W3080756487 title "Contextual Gated Graph Convolutional Networks for Social Unrest Events Prediction" @default.
- W3080756487 cites W2109734180 @default.
- W3080756487 cites W2147876157 @default.
- W3080756487 cites W2404453404 @default.
- W3080756487 cites W2542080616 @default.
- W3080756487 cites W2604314403 @default.
- W3080756487 cites W2612186099 @default.
- W3080756487 cites W2623358004 @default.
- W3080756487 cites W2788474500 @default.
- W3080756487 cites W2795984212 @default.
- W3080756487 cites W2868496215 @default.
- W3080756487 cites W2888493720 @default.
- W3080756487 cites W2904832339 @default.
- W3080756487 cites W2950369002 @default.
- W3080756487 cites W2962946486 @default.
- W3080756487 cites W2963105247 @default.
- W3080756487 cites W2963791934 @default.
- W3080756487 cites W2963964898 @default.
- W3080756487 cites W2972995983 @default.
- W3080756487 doi "https://doi.org/10.1109/dsc50466.2020.00056" @default.
- W3080756487 hasPublicationYear "2020" @default.
- W3080756487 type Work @default.
- W3080756487 sameAs 3080756487 @default.
- W3080756487 citedByCount "0" @default.
- W3080756487 crossrefType "proceedings-article" @default.
- W3080756487 hasAuthorship W3080756487A5030424204 @default.
- W3080756487 hasAuthorship W3080756487A5050122606 @default.
- W3080756487 hasAuthorship W3080756487A5066158698 @default.
- W3080756487 hasAuthorship W3080756487A5075156923 @default.
- W3080756487 hasConcept C132525143 @default.
- W3080756487 hasConcept C136764020 @default.
- W3080756487 hasConcept C154945302 @default.
- W3080756487 hasConcept C17744445 @default.
- W3080756487 hasConcept C199539241 @default.
- W3080756487 hasConcept C2778358470 @default.
- W3080756487 hasConcept C2994499861 @default.
- W3080756487 hasConcept C41008148 @default.
- W3080756487 hasConcept C518677369 @default.
- W3080756487 hasConcept C80444323 @default.
- W3080756487 hasConcept C81363708 @default.
- W3080756487 hasConcept C94625758 @default.
- W3080756487 hasConceptScore W3080756487C132525143 @default.
- W3080756487 hasConceptScore W3080756487C136764020 @default.
- W3080756487 hasConceptScore W3080756487C154945302 @default.
- W3080756487 hasConceptScore W3080756487C17744445 @default.
- W3080756487 hasConceptScore W3080756487C199539241 @default.
- W3080756487 hasConceptScore W3080756487C2778358470 @default.
- W3080756487 hasConceptScore W3080756487C2994499861 @default.
- W3080756487 hasConceptScore W3080756487C41008148 @default.
- W3080756487 hasConceptScore W3080756487C518677369 @default.
- W3080756487 hasConceptScore W3080756487C80444323 @default.
- W3080756487 hasConceptScore W3080756487C81363708 @default.
- W3080756487 hasConceptScore W3080756487C94625758 @default.
- W3080756487 hasLocation W30807564871 @default.
- W3080756487 hasOpenAccess W3080756487 @default.
- W3080756487 hasPrimaryLocation W30807564871 @default.
- W3080756487 hasRelatedWork W163853734 @default.
- W3080756487 hasRelatedWork W2113065459 @default.
- W3080756487 hasRelatedWork W2294608714 @default.
- W3080756487 hasRelatedWork W2889592327 @default.
- W3080756487 hasRelatedWork W3134057789 @default.
- W3080756487 hasRelatedWork W4242990172 @default.
- W3080756487 hasRelatedWork W4252343821 @default.
- W3080756487 hasRelatedWork W4300003876 @default.
- W3080756487 hasRelatedWork W4307270535 @default.
- W3080756487 hasRelatedWork W76644405 @default.
- W3080756487 isParatext "false" @default.
- W3080756487 isRetracted "false" @default.
- W3080756487 magId "3080756487" @default.
- W3080756487 workType "article" @default.