Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080777656> ?p ?o ?g. }
- W3080777656 endingPage "1845" @default.
- W3080777656 startingPage "1833" @default.
- W3080777656 abstract "ConspectusTransition metal catalyzed cross-electrophile coupling of alkyl electrophiles has evolved into a privileged strategy that permits the facile construction of valuable C(sp3)–C bonds. Numerous elegant Ni-catalyzed coupling methods, for example, arylation, allylation, acylation, and vinylation of primary and secondary alkyl halides have been developed. This prior work has provided important mechanistic insights into the selectivity and reactivity of the coupling partners, which are largely dictated by both the catalysts and the reactants. In spite of the advances made to date, a number of challenging issues remain, including (1) achieving stereoselective syntheses of C–C bonds that rely primarily on functionalized or activated alkyl precursors, (2) diversifying the electrophiles, and (3) gaining insights into the underlying reaction mechanisms.In this Account, we summarize a number of Ni- and Fe-catalyzed reductive C–C bond forming methods developed in our laboratory, which have allowed us to couple activated, sterically hindered tertiary alkyl and C(sp3)–O bond electrophiles and to access methylated and trifluoromethylated products, esters, C-glycosides, and quaternary carbon centers. We will begin with a brief discussion of Ni-catalyzed chemoselective construction of unactivated alkyl–alkyl bonds, with focus on the effects of ligands and reductants, along with leaving group-directed reactivities of alkyl halides, and the role they play in promoting the reductive coupling of activated electrophiles, including methyl, trifluoromethyl, and glycosyl electrophiles, and chloroformates. Matching the reactivities of these electrophiles with suitable coupling partners is considered essential for success; this is something that can be tuned by means of appropriate Ni catalysts. Second, we will detail how tuning the steric and electronic effects of nickel catalysts with labile pyridine-type ligands and additives (primarily MgCl2) permits effective creation of arylated all-carbon quaternary centers through the coupling of aryl halides with sterically encumbered tertiary alkyl halides. In contrast, the use of bulkier bipyridine and terpyridine ligands permits the incorporation of relative small-sized acyl and allyl groups into acylated and allylated all-carbon quaternary centers. Finally, we will show how the knowledge gained with halide electrophiles enabled us to develop methods that permit the coupling of tertiary alkyl oxalates with allyl, aryl, and vinyl electrophiles, wherein Barton C–O bond radical fragmentation is mediated by Zn and MgCl2 and promoted by Ni catalysts. The same protocol is applicable to the arylation of secondary alkyl oxalates derived from α-hydroxyl carbonyl substrates, which involves the formation of relatively stable α-carbonyl carbon centered radicals. Thus, this Account not only summarizes synthetic methods that allow formation of valuable C–C bonds using challenging electrophiles but also provides insight into the relationship between the structure and reactivity of the substrates and catalysts, as well as the effects of additives." @default.
- W3080777656 created "2020-09-01" @default.
- W3080777656 creator A5000215293 @default.
- W3080777656 creator A5007859420 @default.
- W3080777656 creator A5035684946 @default.
- W3080777656 creator A5087473417 @default.
- W3080777656 date "2020-08-25" @default.
- W3080777656 modified "2023-10-10" @default.
- W3080777656 title "Cross-Electrophile Couplings of Activated and Sterically Hindered Halides and Alcohol Derivatives" @default.
- W3080777656 cites W1963881574 @default.
- W3080777656 cites W1963926801 @default.
- W3080777656 cites W1977174049 @default.
- W3080777656 cites W1977939709 @default.
- W3080777656 cites W1981997364 @default.
- W3080777656 cites W1983271503 @default.
- W3080777656 cites W2007440128 @default.
- W3080777656 cites W2046375331 @default.
- W3080777656 cites W2072591300 @default.
- W3080777656 cites W2077703071 @default.
- W3080777656 cites W2082766768 @default.
- W3080777656 cites W2112485861 @default.
- W3080777656 cites W2117123115 @default.
- W3080777656 cites W2145869717 @default.
- W3080777656 cites W2168129030 @default.
- W3080777656 cites W2314663239 @default.
- W3080777656 cites W2315042253 @default.
- W3080777656 cites W2316766720 @default.
- W3080777656 cites W2318018747 @default.
- W3080777656 cites W2318346579 @default.
- W3080777656 cites W2327472265 @default.
- W3080777656 cites W2342398197 @default.
- W3080777656 cites W2412368962 @default.
- W3080777656 cites W2500710833 @default.
- W3080777656 cites W2554211637 @default.
- W3080777656 cites W2555267393 @default.
- W3080777656 cites W2605975259 @default.
- W3080777656 cites W2612498535 @default.
- W3080777656 cites W2724182122 @default.
- W3080777656 cites W2747485619 @default.
- W3080777656 cites W2748002042 @default.
- W3080777656 cites W2756231965 @default.
- W3080777656 cites W2884406965 @default.
- W3080777656 cites W2896210616 @default.
- W3080777656 cites W2896421604 @default.
- W3080777656 cites W2901148376 @default.
- W3080777656 cites W2905043667 @default.
- W3080777656 cites W2905175324 @default.
- W3080777656 cites W2906418518 @default.
- W3080777656 cites W2912575555 @default.
- W3080777656 cites W2917243342 @default.
- W3080777656 cites W2921623821 @default.
- W3080777656 cites W2923448121 @default.
- W3080777656 cites W2930056504 @default.
- W3080777656 cites W2953846063 @default.
- W3080777656 cites W2971796077 @default.
- W3080777656 cites W2979452426 @default.
- W3080777656 cites W2991334857 @default.
- W3080777656 cites W3008572085 @default.
- W3080777656 cites W3010229046 @default.
- W3080777656 cites W3014364773 @default.
- W3080777656 cites W3025687725 @default.
- W3080777656 cites W389544904 @default.
- W3080777656 cites W4233985581 @default.
- W3080777656 cites W600805821 @default.
- W3080777656 doi "https://doi.org/10.1021/acs.accounts.0c00291" @default.
- W3080777656 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32840998" @default.
- W3080777656 hasPublicationYear "2020" @default.
- W3080777656 type Work @default.
- W3080777656 sameAs 3080777656 @default.
- W3080777656 citedByCount "176" @default.
- W3080777656 countsByYear W30807776562021 @default.
- W3080777656 countsByYear W30807776562022 @default.
- W3080777656 countsByYear W30807776562023 @default.
- W3080777656 crossrefType "journal-article" @default.
- W3080777656 hasAuthorship W3080777656A5000215293 @default.
- W3080777656 hasAuthorship W3080777656A5007859420 @default.
- W3080777656 hasAuthorship W3080777656A5035684946 @default.
- W3080777656 hasAuthorship W3080777656A5087473417 @default.
- W3080777656 hasConcept C161790260 @default.
- W3080777656 hasConcept C178790620 @default.
- W3080777656 hasConcept C185592680 @default.
- W3080777656 hasConcept C190667039 @default.
- W3080777656 hasConcept C201194858 @default.
- W3080777656 hasConcept C21951064 @default.
- W3080777656 hasConcept C2780263894 @default.
- W3080777656 hasConcept C50027330 @default.
- W3080777656 hasConceptScore W3080777656C161790260 @default.
- W3080777656 hasConceptScore W3080777656C178790620 @default.
- W3080777656 hasConceptScore W3080777656C185592680 @default.
- W3080777656 hasConceptScore W3080777656C190667039 @default.
- W3080777656 hasConceptScore W3080777656C201194858 @default.
- W3080777656 hasConceptScore W3080777656C21951064 @default.
- W3080777656 hasConceptScore W3080777656C2780263894 @default.
- W3080777656 hasConceptScore W3080777656C50027330 @default.
- W3080777656 hasFunder F4320321001 @default.
- W3080777656 hasIssue "9" @default.
- W3080777656 hasLocation W30807776561 @default.
- W3080777656 hasOpenAccess W3080777656 @default.