Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080782525> ?p ?o ?g. }
- W3080782525 endingPage "171902" @default.
- W3080782525 startingPage "171892" @default.
- W3080782525 abstract "The operation of heating, ventilation, and air conditioning (HVAC) systems is usually disturbed by many uncertainties such as measurement errors, noise, as well as temperature. Thus, this paper proposes a new multiscale interval principal component analysis (MSIPCA)-based machine learning (ML) technique for fault detection and diagnosis (FDD) of uncertain HVAC systems. The main goal of the developed MSIPCA-ML approach is to enhance the diagnosis performance, improve the indoor environment quality, and minimize the energy consumption in uncertain building systems. The model uncertainty is addressed by considering the interval-valued data representation. The performance of the proposed FDD is investigated using sets of synthetic and emulated data extracted under different operating conditions. The presented results confirm the high-efficiency of the developed technique in monitoring uncertain HVAC systems due to the high diagnosis capabilities of the interval feature-based support vector machines and k-nearest neighbors and their ability to distinguish between the different operating modes of the HVAC system." @default.
- W3080782525 created "2020-09-01" @default.
- W3080782525 creator A5007918840 @default.
- W3080782525 creator A5013855196 @default.
- W3080782525 creator A5017892513 @default.
- W3080782525 creator A5031046256 @default.
- W3080782525 creator A5043479229 @default.
- W3080782525 creator A5059062747 @default.
- W3080782525 date "2020-01-01" @default.
- W3080782525 modified "2023-09-27" @default.
- W3080782525 title "Interval-Valued Features Based Machine Learning Technique for Fault Detection and Diagnosis of Uncertain HVAC Systems" @default.
- W3080782525 cites W1507872748 @default.
- W3080782525 cites W166436113 @default.
- W3080782525 cites W1975575449 @default.
- W3080782525 cites W1983963676 @default.
- W3080782525 cites W1993694278 @default.
- W3080782525 cites W2007961939 @default.
- W3080782525 cites W2024202062 @default.
- W3080782525 cites W2031598273 @default.
- W3080782525 cites W2059138104 @default.
- W3080782525 cites W2074058676 @default.
- W3080782525 cites W2081525541 @default.
- W3080782525 cites W2083329817 @default.
- W3080782525 cites W2101817936 @default.
- W3080782525 cites W2128420091 @default.
- W3080782525 cites W2132984323 @default.
- W3080782525 cites W2147129131 @default.
- W3080782525 cites W2169347809 @default.
- W3080782525 cites W2269252999 @default.
- W3080782525 cites W2625395099 @default.
- W3080782525 cites W2793135643 @default.
- W3080782525 cites W2809919425 @default.
- W3080782525 cites W2902087014 @default.
- W3080782525 cites W2946116399 @default.
- W3080782525 cites W2946929722 @default.
- W3080782525 cites W2966970255 @default.
- W3080782525 cites W2999570460 @default.
- W3080782525 cites W3006671208 @default.
- W3080782525 cites W3016260214 @default.
- W3080782525 cites W3016930809 @default.
- W3080782525 cites W3023883218 @default.
- W3080782525 cites W3041091733 @default.
- W3080782525 cites W3046875737 @default.
- W3080782525 cites W3047349176 @default.
- W3080782525 cites W4239510810 @default.
- W3080782525 cites W647236485 @default.
- W3080782525 doi "https://doi.org/10.1109/access.2020.3019365" @default.
- W3080782525 hasPublicationYear "2020" @default.
- W3080782525 type Work @default.
- W3080782525 sameAs 3080782525 @default.
- W3080782525 citedByCount "13" @default.
- W3080782525 countsByYear W30807825252021 @default.
- W3080782525 countsByYear W30807825252022 @default.
- W3080782525 countsByYear W30807825252023 @default.
- W3080782525 crossrefType "journal-article" @default.
- W3080782525 hasAuthorship W3080782525A5007918840 @default.
- W3080782525 hasAuthorship W3080782525A5013855196 @default.
- W3080782525 hasAuthorship W3080782525A5017892513 @default.
- W3080782525 hasAuthorship W3080782525A5031046256 @default.
- W3080782525 hasAuthorship W3080782525A5043479229 @default.
- W3080782525 hasAuthorship W3080782525A5059062747 @default.
- W3080782525 hasBestOaLocation W30807825251 @default.
- W3080782525 hasConcept C103742991 @default.
- W3080782525 hasConcept C114614502 @default.
- W3080782525 hasConcept C115961682 @default.
- W3080782525 hasConcept C119857082 @default.
- W3080782525 hasConcept C122346748 @default.
- W3080782525 hasConcept C12267149 @default.
- W3080782525 hasConcept C127313418 @default.
- W3080782525 hasConcept C127413603 @default.
- W3080782525 hasConcept C152745839 @default.
- W3080782525 hasConcept C154945302 @default.
- W3080782525 hasConcept C165205528 @default.
- W3080782525 hasConcept C172707124 @default.
- W3080782525 hasConcept C175551986 @default.
- W3080782525 hasConcept C200601418 @default.
- W3080782525 hasConcept C27438332 @default.
- W3080782525 hasConcept C2778067643 @default.
- W3080782525 hasConcept C2780150128 @default.
- W3080782525 hasConcept C33923547 @default.
- W3080782525 hasConcept C41008148 @default.
- W3080782525 hasConcept C50644808 @default.
- W3080782525 hasConcept C78519656 @default.
- W3080782525 hasConcept C99498987 @default.
- W3080782525 hasConceptScore W3080782525C103742991 @default.
- W3080782525 hasConceptScore W3080782525C114614502 @default.
- W3080782525 hasConceptScore W3080782525C115961682 @default.
- W3080782525 hasConceptScore W3080782525C119857082 @default.
- W3080782525 hasConceptScore W3080782525C122346748 @default.
- W3080782525 hasConceptScore W3080782525C12267149 @default.
- W3080782525 hasConceptScore W3080782525C127313418 @default.
- W3080782525 hasConceptScore W3080782525C127413603 @default.
- W3080782525 hasConceptScore W3080782525C152745839 @default.
- W3080782525 hasConceptScore W3080782525C154945302 @default.
- W3080782525 hasConceptScore W3080782525C165205528 @default.
- W3080782525 hasConceptScore W3080782525C172707124 @default.
- W3080782525 hasConceptScore W3080782525C175551986 @default.
- W3080782525 hasConceptScore W3080782525C200601418 @default.