Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080787368> ?p ?o ?g. }
- W3080787368 endingPage "128067" @default.
- W3080787368 startingPage "128067" @default.
- W3080787368 abstract "The greatest constraint in the advanced oxidation processes involved Fe(II)/PMS was the low utilization of Fe(II) and PMS. In the present study, the co-catalytic effect of WS2 on the Fe(II)/PMS system for the degradation of organics was investigated. In the presence of WS2, Fe(III) was reduced to Fe(II) during the reaction and resulted in improved decomposition of PMS as well as the degradation of 4-chloriphenol (4-CP). The decomposition rate of PMS and degradation efficiency of 4-CP were 10% and 25% in the Fe(II)/PMS process, while the efficiencies respectively increased to 99% and 100% in the WS2 assisted Fe(II)/PMS system. The degradation of 4-CP was completed via the free radical pathway and SO4•- played a more important role than other active species. Low concentration of inorganic ions such as Cl− and HCO3− exhibited irrelevant effect while humic acid showed significant suppression on the WS2/Fe(II)/PMS system. Additionally, characterization and recycle results implied that WS2 maintained a good stability during the co-catalytic processes." @default.
- W3080787368 created "2020-09-01" @default.
- W3080787368 creator A5001744159 @default.
- W3080787368 creator A5018560297 @default.
- W3080787368 creator A5022855786 @default.
- W3080787368 creator A5022951985 @default.
- W3080787368 creator A5029121978 @default.
- W3080787368 creator A5076306729 @default.
- W3080787368 date "2021-01-01" @default.
- W3080787368 modified "2023-10-17" @default.
- W3080787368 title "WS2 as highly active co-catalyst for the regeneration of Fe(II) in the advanced oxidation processes" @default.
- W3080787368 cites W1991821893 @default.
- W3080787368 cites W1996906301 @default.
- W3080787368 cites W1997450406 @default.
- W3080787368 cites W1999414626 @default.
- W3080787368 cites W2014375317 @default.
- W3080787368 cites W2029221262 @default.
- W3080787368 cites W2038173949 @default.
- W3080787368 cites W2040322544 @default.
- W3080787368 cites W2047573778 @default.
- W3080787368 cites W2051873653 @default.
- W3080787368 cites W2060044938 @default.
- W3080787368 cites W2071765036 @default.
- W3080787368 cites W2073564719 @default.
- W3080787368 cites W2079253547 @default.
- W3080787368 cites W2086270926 @default.
- W3080787368 cites W2096571017 @default.
- W3080787368 cites W2104735641 @default.
- W3080787368 cites W2109325117 @default.
- W3080787368 cites W2150288531 @default.
- W3080787368 cites W2218991269 @default.
- W3080787368 cites W2286383240 @default.
- W3080787368 cites W2315776822 @default.
- W3080787368 cites W2318792504 @default.
- W3080787368 cites W2335221168 @default.
- W3080787368 cites W2460797346 @default.
- W3080787368 cites W2461217359 @default.
- W3080787368 cites W2482161156 @default.
- W3080787368 cites W2519269388 @default.
- W3080787368 cites W2564291256 @default.
- W3080787368 cites W2566048126 @default.
- W3080787368 cites W2606964843 @default.
- W3080787368 cites W2608179893 @default.
- W3080787368 cites W2726479470 @default.
- W3080787368 cites W2736371272 @default.
- W3080787368 cites W2740459967 @default.
- W3080787368 cites W2791086199 @default.
- W3080787368 cites W2888401269 @default.
- W3080787368 cites W2890767204 @default.
- W3080787368 cites W2891022562 @default.
- W3080787368 cites W2891606388 @default.
- W3080787368 cites W2900834612 @default.
- W3080787368 cites W2908556609 @default.
- W3080787368 cites W2913204964 @default.
- W3080787368 cites W2923887890 @default.
- W3080787368 cites W2944062859 @default.
- W3080787368 cites W2951429700 @default.
- W3080787368 cites W2963660325 @default.
- W3080787368 cites W2976259470 @default.
- W3080787368 cites W2980520507 @default.
- W3080787368 cites W2990517578 @default.
- W3080787368 cites W2991718001 @default.
- W3080787368 cites W2995705270 @default.
- W3080787368 cites W3016884229 @default.
- W3080787368 doi "https://doi.org/10.1016/j.chemosphere.2020.128067" @default.
- W3080787368 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33182131" @default.
- W3080787368 hasPublicationYear "2021" @default.
- W3080787368 type Work @default.
- W3080787368 sameAs 3080787368 @default.
- W3080787368 citedByCount "26" @default.
- W3080787368 countsByYear W30807873682021 @default.
- W3080787368 countsByYear W30807873682022 @default.
- W3080787368 countsByYear W30807873682023 @default.
- W3080787368 crossrefType "journal-article" @default.
- W3080787368 hasAuthorship W3080787368A5001744159 @default.
- W3080787368 hasAuthorship W3080787368A5018560297 @default.
- W3080787368 hasAuthorship W3080787368A5022855786 @default.
- W3080787368 hasAuthorship W3080787368A5022951985 @default.
- W3080787368 hasAuthorship W3080787368A5029121978 @default.
- W3080787368 hasAuthorship W3080787368A5076306729 @default.
- W3080787368 hasConcept C121332964 @default.
- W3080787368 hasConcept C124681953 @default.
- W3080787368 hasConcept C13965031 @default.
- W3080787368 hasConcept C145148216 @default.
- W3080787368 hasConcept C148898269 @default.
- W3080787368 hasConcept C161790260 @default.
- W3080787368 hasConcept C178790620 @default.
- W3080787368 hasConcept C179104552 @default.
- W3080787368 hasConcept C185592680 @default.
- W3080787368 hasConcept C2779679103 @default.
- W3080787368 hasConcept C2780560099 @default.
- W3080787368 hasConcept C2780965034 @default.
- W3080787368 hasConcept C2993359049 @default.
- W3080787368 hasConcept C41008148 @default.
- W3080787368 hasConcept C62520636 @default.
- W3080787368 hasConcept C76155785 @default.
- W3080787368 hasConceptScore W3080787368C121332964 @default.
- W3080787368 hasConceptScore W3080787368C124681953 @default.