Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080804500> ?p ?o ?g. }
- W3080804500 endingPage "800" @default.
- W3080804500 startingPage "788" @default.
- W3080804500 abstract "Purpose Job involvement can be linked with important work outcomes. One way for organizations to increase job involvement is to use machine learning technology to predict employees’ job involvement, so that their leaders of human resource (HR) management can take proactive measures or plan succession for preservation. This paper aims to develop a reliable job involvement prediction model using machine learning technique. Design/methodology/approach This study used the data set, which is available at International Business Machines (IBM) Watson Analytics in IBM community and applied a generalized linear model (GLM) including linear regression and binomial classification. This study essentially had two primary approaches. First, this paper intends to understand the role of variables in job involvement prediction modeling better. Second, the study seeks to evaluate the predictive performance of GLM including linear regression and binomial classification. Findings In these results, first, employees’ job involvement with a lot of individual factors can be predicted. Second, for each model, this model showed the outstanding predictive performance. Practical implications The pre-access and modeling methodology used in this paper can be viewed as a roadmap for the reader to follow the steps taken in this study and to apply procedures to identify the causes of many other HR management problems. Originality/value This paper is the first one to attempt to come up with the best-performing model for predicting job involvement based on a limited set of features including employees’ demographics using machine learning technique." @default.
- W3080804500 created "2020-09-01" @default.
- W3080804500 creator A5080351327 @default.
- W3080804500 creator A5080980885 @default.
- W3080804500 date "2020-08-24" @default.
- W3080804500 modified "2023-10-09" @default.
- W3080804500 title "A study of job involvement prediction using machine learning technique" @default.
- W3080804500 cites W1963728911 @default.
- W3080804500 cites W1966698674 @default.
- W3080804500 cites W1982146393 @default.
- W3080804500 cites W1998410408 @default.
- W3080804500 cites W2007810752 @default.
- W3080804500 cites W2010628651 @default.
- W3080804500 cites W2013268294 @default.
- W3080804500 cites W2016788251 @default.
- W3080804500 cites W2017111451 @default.
- W3080804500 cites W2021123728 @default.
- W3080804500 cites W2024057333 @default.
- W3080804500 cites W2028520303 @default.
- W3080804500 cites W2050007633 @default.
- W3080804500 cites W2050632879 @default.
- W3080804500 cites W2051317694 @default.
- W3080804500 cites W2057229090 @default.
- W3080804500 cites W2069433961 @default.
- W3080804500 cites W2080057209 @default.
- W3080804500 cites W2084139018 @default.
- W3080804500 cites W2092063714 @default.
- W3080804500 cites W2129925362 @default.
- W3080804500 cites W2134597054 @default.
- W3080804500 cites W2139372732 @default.
- W3080804500 cites W2188746271 @default.
- W3080804500 doi "https://doi.org/10.1108/ijoa-05-2020-2222" @default.
- W3080804500 hasPublicationYear "2020" @default.
- W3080804500 type Work @default.
- W3080804500 sameAs 3080804500 @default.
- W3080804500 citedByCount "7" @default.
- W3080804500 countsByYear W30808045002021 @default.
- W3080804500 countsByYear W30808045002022 @default.
- W3080804500 countsByYear W30808045002023 @default.
- W3080804500 crossrefType "journal-article" @default.
- W3080804500 hasAuthorship W3080804500A5080351327 @default.
- W3080804500 hasAuthorship W3080804500A5080980885 @default.
- W3080804500 hasConcept C11012388 @default.
- W3080804500 hasConcept C114494560 @default.
- W3080804500 hasConcept C119857082 @default.
- W3080804500 hasConcept C152877465 @default.
- W3080804500 hasConcept C154945302 @default.
- W3080804500 hasConcept C15744967 @default.
- W3080804500 hasConcept C171250308 @default.
- W3080804500 hasConcept C177264268 @default.
- W3080804500 hasConcept C192562407 @default.
- W3080804500 hasConcept C199360897 @default.
- W3080804500 hasConcept C2522767166 @default.
- W3080804500 hasConcept C2776950860 @default.
- W3080804500 hasConcept C41008148 @default.
- W3080804500 hasConcept C45804977 @default.
- W3080804500 hasConcept C56739046 @default.
- W3080804500 hasConcept C70388272 @default.
- W3080804500 hasConcept C77805123 @default.
- W3080804500 hasConcept C79158427 @default.
- W3080804500 hasConcept C83209312 @default.
- W3080804500 hasConceptScore W3080804500C11012388 @default.
- W3080804500 hasConceptScore W3080804500C114494560 @default.
- W3080804500 hasConceptScore W3080804500C119857082 @default.
- W3080804500 hasConceptScore W3080804500C152877465 @default.
- W3080804500 hasConceptScore W3080804500C154945302 @default.
- W3080804500 hasConceptScore W3080804500C15744967 @default.
- W3080804500 hasConceptScore W3080804500C171250308 @default.
- W3080804500 hasConceptScore W3080804500C177264268 @default.
- W3080804500 hasConceptScore W3080804500C192562407 @default.
- W3080804500 hasConceptScore W3080804500C199360897 @default.
- W3080804500 hasConceptScore W3080804500C2522767166 @default.
- W3080804500 hasConceptScore W3080804500C2776950860 @default.
- W3080804500 hasConceptScore W3080804500C41008148 @default.
- W3080804500 hasConceptScore W3080804500C45804977 @default.
- W3080804500 hasConceptScore W3080804500C56739046 @default.
- W3080804500 hasConceptScore W3080804500C70388272 @default.
- W3080804500 hasConceptScore W3080804500C77805123 @default.
- W3080804500 hasConceptScore W3080804500C79158427 @default.
- W3080804500 hasConceptScore W3080804500C83209312 @default.
- W3080804500 hasIssue "3" @default.
- W3080804500 hasLocation W30808045001 @default.
- W3080804500 hasOpenAccess W3080804500 @default.
- W3080804500 hasPrimaryLocation W30808045001 @default.
- W3080804500 hasRelatedWork W2543516608 @default.
- W3080804500 hasRelatedWork W2809858895 @default.
- W3080804500 hasRelatedWork W2920908702 @default.
- W3080804500 hasRelatedWork W3032028635 @default.
- W3080804500 hasRelatedWork W3157996826 @default.
- W3080804500 hasRelatedWork W3212124726 @default.
- W3080804500 hasRelatedWork W4313393264 @default.
- W3080804500 hasRelatedWork W567650323 @default.
- W3080804500 hasRelatedWork W1935237528 @default.
- W3080804500 hasRelatedWork W3124356676 @default.
- W3080804500 hasVolume "29" @default.
- W3080804500 isParatext "false" @default.
- W3080804500 isRetracted "false" @default.
- W3080804500 magId "3080804500" @default.