Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080830966> ?p ?o ?g. }
- W3080830966 endingPage "262" @default.
- W3080830966 startingPage "199" @default.
- W3080830966 abstract "This research proposes machine learning algorithms in conjunction with cognitive-based networking as a remote patient monitoring framework for accurately predicting disease state and disease parameters from remotely monitored and measured patient biometric and biomedical signals. This system would facilitate doctors and clinicians by providing hospitals machine learning-based predictive clinical decision support systems to remotely monitor patients and their diseases. In this proposed work, a cognitive radio (CR) network is simulated for optimization of spectrum sensing and energy detection. Further, two effective classification methods are evaluated on remotely measured physiological parameters, such as blood pressure and heart rate, of patients with two types of diseases—chronic kidney disease and heart disease. First, a support vector machine (SVM) model was trained on a heart disease dataset with inputs and binary targets. The disease parameter correlations between blood pressure and age, heart rate, and blood glucose level results were plotted and their relationships were modeled using SVM. Second, the artificial neural network (ANN) algorithm was employed for the detection of disease state with the two types of disease datasets—heart disease and chronic kidney diagnosis. With SVM, the accuracy was around 60% for heart disease and 84% for chronic kidney disease patients. The percentage of accurately categorized patients with ANN was observed to be 95% overall in estimate for heart disease and 93% overall in estimate for chronic kidney disease. ANN is more accurate and recommended for predictive modeling of patient data in the proposed cognitive IoT remote patient monitoring system." @default.
- W3080830966 created "2020-09-01" @default.
- W3080830966 creator A5009360571 @default.
- W3080830966 creator A5010533303 @default.
- W3080830966 creator A5038027729 @default.
- W3080830966 date "2020-01-01" @default.
- W3080830966 modified "2023-09-27" @default.
- W3080830966 title "Medical Analytics Based on Artificial Neural Networks Using Cognitive Internet of Things" @default.
- W3080830966 cites W1525821413 @default.
- W3080830966 cites W1788288079 @default.
- W3080830966 cites W1968567040 @default.
- W3080830966 cites W1980062526 @default.
- W3080830966 cites W1989164753 @default.
- W3080830966 cites W2010877071 @default.
- W3080830966 cites W2015118193 @default.
- W3080830966 cites W2050206309 @default.
- W3080830966 cites W2056257974 @default.
- W3080830966 cites W2067767653 @default.
- W3080830966 cites W2073468490 @default.
- W3080830966 cites W2076656703 @default.
- W3080830966 cites W2091537331 @default.
- W3080830966 cites W2097936772 @default.
- W3080830966 cites W2104161134 @default.
- W3080830966 cites W2125496433 @default.
- W3080830966 cites W2131226296 @default.
- W3080830966 cites W2141672871 @default.
- W3080830966 cites W2147553533 @default.
- W3080830966 cites W2150094250 @default.
- W3080830966 cites W2162488259 @default.
- W3080830966 cites W2164209640 @default.
- W3080830966 cites W2171670230 @default.
- W3080830966 cites W2184958548 @default.
- W3080830966 cites W2189557630 @default.
- W3080830966 cites W2248994968 @default.
- W3080830966 cites W2295795590 @default.
- W3080830966 cites W2337234569 @default.
- W3080830966 cites W2460271709 @default.
- W3080830966 cites W2509435725 @default.
- W3080830966 cites W2514894393 @default.
- W3080830966 cites W2515661504 @default.
- W3080830966 cites W2527484278 @default.
- W3080830966 cites W2568429552 @default.
- W3080830966 cites W2577105610 @default.
- W3080830966 cites W2588732096 @default.
- W3080830966 cites W2602126201 @default.
- W3080830966 cites W2604152708 @default.
- W3080830966 cites W2611209666 @default.
- W3080830966 cites W2614981836 @default.
- W3080830966 cites W2619310525 @default.
- W3080830966 cites W2622082996 @default.
- W3080830966 cites W2736688134 @default.
- W3080830966 cites W2745691557 @default.
- W3080830966 cites W2754544136 @default.
- W3080830966 cites W2754902318 @default.
- W3080830966 cites W2765386572 @default.
- W3080830966 cites W2765926089 @default.
- W3080830966 cites W2767298563 @default.
- W3080830966 cites W2767818267 @default.
- W3080830966 cites W2771186895 @default.
- W3080830966 cites W2771260385 @default.
- W3080830966 cites W2784726185 @default.
- W3080830966 cites W2790524866 @default.
- W3080830966 cites W2798387411 @default.
- W3080830966 cites W2799241404 @default.
- W3080830966 cites W2806495638 @default.
- W3080830966 cites W2807548288 @default.
- W3080830966 cites W2808445014 @default.
- W3080830966 cites W2874432367 @default.
- W3080830966 cites W2885280164 @default.
- W3080830966 cites W2887785698 @default.
- W3080830966 cites W2888317614 @default.
- W3080830966 cites W2891745995 @default.
- W3080830966 cites W2894858222 @default.
- W3080830966 cites W2894865050 @default.
- W3080830966 cites W2898172422 @default.
- W3080830966 cites W2898424867 @default.
- W3080830966 cites W2900355873 @default.
- W3080830966 cites W2900664373 @default.
- W3080830966 cites W2903044938 @default.
- W3080830966 cites W2903384045 @default.
- W3080830966 cites W2904657923 @default.
- W3080830966 cites W2908293320 @default.
- W3080830966 cites W2910326996 @default.
- W3080830966 cites W2911262326 @default.
- W3080830966 cites W2911646494 @default.
- W3080830966 cites W2912512958 @default.
- W3080830966 cites W2918925950 @default.
- W3080830966 cites W2918991412 @default.
- W3080830966 cites W2927208242 @default.
- W3080830966 cites W2933408479 @default.
- W3080830966 cites W2942586735 @default.
- W3080830966 cites W2943040914 @default.
- W3080830966 cites W2943063718 @default.
- W3080830966 cites W2945241066 @default.
- W3080830966 cites W2945498153 @default.
- W3080830966 cites W2946564490 @default.
- W3080830966 cites W2947088712 @default.
- W3080830966 cites W2948912642 @default.