Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080841735> ?p ?o ?g. }
- W3080841735 endingPage "547" @default.
- W3080841735 startingPage "524" @default.
- W3080841735 abstract "Quantile is an important quantity in reliability analysis, as it is related to the resistance level for defining failure events. This study develops a computationally efficient sampling method for estimating extreme quantiles using stochastic black box computer models. Importance sampling has been widely employed as a powerful variance reduction technique to reduce estimation uncertainty and improve computational efficiency in many reliability studies. However, when applied to quantile estimation, importance sampling faces challenges, because a good choice of the importance sampling density relies on information about the unknown quantile. We propose an adaptive method that refines the importance sampling density parameter toward the unknown target quantile value along the iterations. The proposed adaptive scheme allows us to use the simulation outcomes obtained in previous iterations for steering the simulation process to focus on important input areas. We prove some convergence properties of the proposed method and show that our approach can achieve variance reduction over crude Monte Carlo sampling. We demonstrate its estimation efficiency through numerical examples and wind turbine case study." @default.
- W3080841735 created "2020-09-01" @default.
- W3080841735 creator A5003297564 @default.
- W3080841735 creator A5050904157 @default.
- W3080841735 creator A5071064725 @default.
- W3080841735 creator A5078758458 @default.
- W3080841735 date "2020-08-19" @default.
- W3080841735 modified "2023-09-27" @default.
- W3080841735 title "Adaptive importance sampling for extreme quantile estimation with stochastic black box computer models" @default.
- W3080841735 cites W1621653743 @default.
- W3080841735 cites W1665662210 @default.
- W3080841735 cites W1751643050 @default.
- W3080841735 cites W1991788899 @default.
- W3080841735 cites W1994616650 @default.
- W3080841735 cites W1999000678 @default.
- W3080841735 cites W2003732947 @default.
- W3080841735 cites W2006722592 @default.
- W3080841735 cites W2007181101 @default.
- W3080841735 cites W2011510073 @default.
- W3080841735 cites W2016579196 @default.
- W3080841735 cites W2023678279 @default.
- W3080841735 cites W2027973545 @default.
- W3080841735 cites W2032329996 @default.
- W3080841735 cites W2034107358 @default.
- W3080841735 cites W2041013609 @default.
- W3080841735 cites W2042204282 @default.
- W3080841735 cites W2043653481 @default.
- W3080841735 cites W2045396361 @default.
- W3080841735 cites W2048845198 @default.
- W3080841735 cites W2049250028 @default.
- W3080841735 cites W2056760934 @default.
- W3080841735 cites W2090492278 @default.
- W3080841735 cites W2094509095 @default.
- W3080841735 cites W2104563653 @default.
- W3080841735 cites W2149540235 @default.
- W3080841735 cites W2154065358 @default.
- W3080841735 cites W2154513807 @default.
- W3080841735 cites W2160095746 @default.
- W3080841735 cites W2163286960 @default.
- W3080841735 cites W2179435707 @default.
- W3080841735 cites W2272328839 @default.
- W3080841735 cites W2318412574 @default.
- W3080841735 cites W2346269961 @default.
- W3080841735 cites W2605844352 @default.
- W3080841735 cites W2735102987 @default.
- W3080841735 cites W2763315906 @default.
- W3080841735 cites W2765267601 @default.
- W3080841735 cites W2887014984 @default.
- W3080841735 cites W3017191956 @default.
- W3080841735 cites W3101747313 @default.
- W3080841735 cites W3106241642 @default.
- W3080841735 cites W3106428322 @default.
- W3080841735 cites W3125471937 @default.
- W3080841735 cites W4211042066 @default.
- W3080841735 cites W4242790731 @default.
- W3080841735 cites W4247310288 @default.
- W3080841735 cites W4292660408 @default.
- W3080841735 doi "https://doi.org/10.1002/nav.21938" @default.
- W3080841735 hasPublicationYear "2020" @default.
- W3080841735 type Work @default.
- W3080841735 sameAs 3080841735 @default.
- W3080841735 citedByCount "6" @default.
- W3080841735 countsByYear W30808417352021 @default.
- W3080841735 countsByYear W30808417352022 @default.
- W3080841735 countsByYear W30808417352023 @default.
- W3080841735 crossrefType "journal-article" @default.
- W3080841735 hasAuthorship W3080841735A5003297564 @default.
- W3080841735 hasAuthorship W3080841735A5050904157 @default.
- W3080841735 hasAuthorship W3080841735A5071064725 @default.
- W3080841735 hasAuthorship W3080841735A5078758458 @default.
- W3080841735 hasBestOaLocation W30808417352 @default.
- W3080841735 hasConcept C105795698 @default.
- W3080841735 hasConcept C106131492 @default.
- W3080841735 hasConcept C111335779 @default.
- W3080841735 hasConcept C11413529 @default.
- W3080841735 hasConcept C118671147 @default.
- W3080841735 hasConcept C121332964 @default.
- W3080841735 hasConcept C121955636 @default.
- W3080841735 hasConcept C126255220 @default.
- W3080841735 hasConcept C140779682 @default.
- W3080841735 hasConcept C144133560 @default.
- W3080841735 hasConcept C147581598 @default.
- W3080841735 hasConcept C154945302 @default.
- W3080841735 hasConcept C162324750 @default.
- W3080841735 hasConcept C163258240 @default.
- W3080841735 hasConcept C19499675 @default.
- W3080841735 hasConcept C196083921 @default.
- W3080841735 hasConcept C2524010 @default.
- W3080841735 hasConcept C2777303404 @default.
- W3080841735 hasConcept C2781395549 @default.
- W3080841735 hasConcept C31972630 @default.
- W3080841735 hasConcept C33923547 @default.
- W3080841735 hasConcept C41008148 @default.
- W3080841735 hasConcept C43214815 @default.
- W3080841735 hasConcept C50522688 @default.
- W3080841735 hasConcept C52740198 @default.
- W3080841735 hasConcept C62520636 @default.
- W3080841735 hasConcept C62644790 @default.