Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080847572> ?p ?o ?g. }
- W3080847572 endingPage "102808" @default.
- W3080847572 startingPage "102808" @default.
- W3080847572 abstract "The big data sources in smart grid (SG) enable utilities to monitor, control, and manage the energy system effectively, which is also promising to advance the efficiency, reliability, and sustainability of energy usage. However, false data attacks, as a major threat with wide targets and severe impacts, have exposed the SG systems to a large variety of security issues. To detect this threat effectively, several machine learning (ML)-based methods have been developed in the past few years. In this paper, we provide a comprehensive survey of these advances. The paper starts by providing a brief overview of SG architecture and its data sources. Moreover, the categories of false data attacks followed by data security requirements are introduced. Then, the recent ML-based detection techniques are summarized by grouping them into three major detection scenarios: non-technical losses, state estimation, and load forecasting. At last, we further investigate the potential research directions at the end of the paper, considering the deficiencies of current ML-based mechanisms. Specifically, we discuss intrusion detection against adversarial attacks, collaborative and decentralized detection framework, detection with privacy preservation, and some potential advanced ML techniques." @default.
- W3080847572 created "2020-09-01" @default.
- W3080847572 creator A5005228053 @default.
- W3080847572 creator A5012293028 @default.
- W3080847572 creator A5026963407 @default.
- W3080847572 creator A5040772796 @default.
- W3080847572 creator A5042609299 @default.
- W3080847572 date "2020-11-01" @default.
- W3080847572 modified "2023-10-17" @default.
- W3080847572 title "Detecting false data attacks using machine learning techniques in smart grid: A survey" @default.
- W3080847572 cites W1972523481 @default.
- W3080847572 cites W1984419556 @default.
- W3080847572 cites W1997081029 @default.
- W3080847572 cites W1998285730 @default.
- W3080847572 cites W2002254092 @default.
- W3080847572 cites W2003530067 @default.
- W3080847572 cites W2019972236 @default.
- W3080847572 cites W2075565671 @default.
- W3080847572 cites W2106424475 @default.
- W3080847572 cites W2133862308 @default.
- W3080847572 cites W2152190235 @default.
- W3080847572 cites W2157954477 @default.
- W3080847572 cites W2165698076 @default.
- W3080847572 cites W2212529815 @default.
- W3080847572 cites W2243397390 @default.
- W3080847572 cites W2312446965 @default.
- W3080847572 cites W2466038529 @default.
- W3080847572 cites W2523841471 @default.
- W3080847572 cites W2525022545 @default.
- W3080847572 cites W2530565048 @default.
- W3080847572 cites W2555676925 @default.
- W3080847572 cites W2597866042 @default.
- W3080847572 cites W2601171548 @default.
- W3080847572 cites W2730936454 @default.
- W3080847572 cites W2737306402 @default.
- W3080847572 cites W2762101885 @default.
- W3080847572 cites W2762155482 @default.
- W3080847572 cites W2763926615 @default.
- W3080847572 cites W2776990447 @default.
- W3080847572 cites W2783173268 @default.
- W3080847572 cites W2786010450 @default.
- W3080847572 cites W2787079451 @default.
- W3080847572 cites W2788544268 @default.
- W3080847572 cites W2792201334 @default.
- W3080847572 cites W2802981749 @default.
- W3080847572 cites W2805092202 @default.
- W3080847572 cites W2894817759 @default.
- W3080847572 cites W2904351506 @default.
- W3080847572 cites W2907922133 @default.
- W3080847572 cites W2910992412 @default.
- W3080847572 cites W2911528396 @default.
- W3080847572 cites W2911981000 @default.
- W3080847572 cites W2912843585 @default.
- W3080847572 cites W2914057541 @default.
- W3080847572 cites W2914738292 @default.
- W3080847572 cites W2918639172 @default.
- W3080847572 cites W2921261293 @default.
- W3080847572 cites W2953404784 @default.
- W3080847572 cites W2962700793 @default.
- W3080847572 cites W2962896174 @default.
- W3080847572 cites W2963318081 @default.
- W3080847572 cites W2979727854 @default.
- W3080847572 cites W3102476541 @default.
- W3080847572 cites W4247200422 @default.
- W3080847572 doi "https://doi.org/10.1016/j.jnca.2020.102808" @default.
- W3080847572 hasPublicationYear "2020" @default.
- W3080847572 type Work @default.
- W3080847572 sameAs 3080847572 @default.
- W3080847572 citedByCount "72" @default.
- W3080847572 countsByYear W30808475722020 @default.
- W3080847572 countsByYear W30808475722021 @default.
- W3080847572 countsByYear W30808475722022 @default.
- W3080847572 countsByYear W30808475722023 @default.
- W3080847572 crossrefType "journal-article" @default.
- W3080847572 hasAuthorship W3080847572A5005228053 @default.
- W3080847572 hasAuthorship W3080847572A5012293028 @default.
- W3080847572 hasAuthorship W3080847572A5026963407 @default.
- W3080847572 hasAuthorship W3080847572A5040772796 @default.
- W3080847572 hasAuthorship W3080847572A5042609299 @default.
- W3080847572 hasConcept C10558101 @default.
- W3080847572 hasConcept C121332964 @default.
- W3080847572 hasConcept C124101348 @default.
- W3080847572 hasConcept C136197465 @default.
- W3080847572 hasConcept C154945302 @default.
- W3080847572 hasConcept C163258240 @default.
- W3080847572 hasConcept C18903297 @default.
- W3080847572 hasConcept C35525427 @default.
- W3080847572 hasConcept C38652104 @default.
- W3080847572 hasConcept C41008148 @default.
- W3080847572 hasConcept C43214815 @default.
- W3080847572 hasConcept C62520636 @default.
- W3080847572 hasConcept C86803240 @default.
- W3080847572 hasConceptScore W3080847572C10558101 @default.
- W3080847572 hasConceptScore W3080847572C121332964 @default.
- W3080847572 hasConceptScore W3080847572C124101348 @default.
- W3080847572 hasConceptScore W3080847572C136197465 @default.
- W3080847572 hasConceptScore W3080847572C154945302 @default.
- W3080847572 hasConceptScore W3080847572C163258240 @default.