Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080853899> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3080853899 endingPage "1430" @default.
- W3080853899 startingPage "1430" @default.
- W3080853899 abstract "1430 Introduction: 123I-metaiodobenzylguanidine (MIBG), analogue of noradrenaline scintigraphy has a long history of clinical use in Japan, and heart-to-mediastinum ratio and washout rate (WR) are common indicators of the sympathetic nervous activity of the heart. These are essential not only for the estimation of severity and prognosis of heart failure but also the diagnosis of movement disorders and dementia related to Lewy-body dementia and Parkinson disease. However, quantitative values are variable due to manual settings, which resulted in diagnostic uncertainty. Therefore, a convolution neural network (CNN)-based algorithm was developed. The diagnostic accuracy of this CNN approach was compared to to the conventional quantification method. Methods: A total of 51 patients (64% men, mean age 67 years) with heart and neurological diseases were studied with 123I-MIBG early and delayed planar and single-photon emission-computed tomography (SPECT), including chronic heart failure with coronary artery disease, arrhythmia, familial amyloid polyneuropathy, Lewy-body dementia and Parkinson disease. First, using both early and delayed SPECT images a CNN model was trained to semantically segment the liver and both lungs. Second, the CNN analyzed the early and delayed image sets simultaneously and aligned them based on first CNNs output. While some cardiac activities were faint or no accumulation in the heart, a second CNN was trained to output a heart volume of interest (VOI) with the same relative location and size for early and delayed images. The model was trained and evaluated using four-fold cross validation. Third, we calculated WR taking the total and average counts in the heart VOI from early and delayed images. WR was calculated directly from the measured count values without the use of background or reference volumes. Finally, we investigated correlation with CNN WR and initial manually set WR (ground truth (GT) in this study), versus planar WR with and without background (BG) correction. Results: The CNN correctly identified cardiac regions in patients with normal uptake and even with faint uptake, but it failed to analyze three patients; a patient with a giant liver cyst; a patient with right highly elevated diaphragm, and a patient with a leakage in an antecubital region during administration of 123I-MIBG. Among the 48 patients, there was good correlation between CNN WR and planar WR without BG correction (r2 = 0.693) showing comparable WR values; planar WR = 0.89 (CNN WR) + 0.06). In addition,CNN WR versus planar WR with BG correction and CNN WR versus GT WR also showed good correlations (r2 = 0.658 and 0.596, respectively). The CNN successfully analyzed images even under conditions of low accumulation in the heart. Conclusions: The CNN WR had a strong correlation with planar WR without BG correction in various clinical settings, including heart and neurological diseases. The CNN-based method is operator-independent and could improve diagnostic accuracy by minimizing the gray zone of diagnostic results, and reducing variation in findings among expert interpretations." @default.
- W3080853899 created "2020-09-01" @default.
- W3080853899 creator A5021720157 @default.
- W3080853899 creator A5029119302 @default.
- W3080853899 creator A5042818116 @default.
- W3080853899 creator A5081765970 @default.
- W3080853899 creator A5090705147 @default.
- W3080853899 creator A5090986588 @default.
- W3080853899 date "2020-05-01" @default.
- W3080853899 modified "2023-09-24" @default.
- W3080853899 title "Application of convolutional neural network to123I-MIBG SPECT imaging: automatic quantitation vs. manual measurements" @default.
- W3080853899 hasPublicationYear "2020" @default.
- W3080853899 type Work @default.
- W3080853899 sameAs 3080853899 @default.
- W3080853899 citedByCount "0" @default.
- W3080853899 crossrefType "journal-article" @default.
- W3080853899 hasAuthorship W3080853899A5021720157 @default.
- W3080853899 hasAuthorship W3080853899A5029119302 @default.
- W3080853899 hasAuthorship W3080853899A5042818116 @default.
- W3080853899 hasAuthorship W3080853899A5081765970 @default.
- W3080853899 hasAuthorship W3080853899A5090705147 @default.
- W3080853899 hasAuthorship W3080853899A5090986588 @default.
- W3080853899 hasConcept C126322002 @default.
- W3080853899 hasConcept C126838900 @default.
- W3080853899 hasConcept C154945302 @default.
- W3080853899 hasConcept C164705383 @default.
- W3080853899 hasConcept C2777767895 @default.
- W3080853899 hasConcept C2778198053 @default.
- W3080853899 hasConcept C2778548049 @default.
- W3080853899 hasConcept C2779097696 @default.
- W3080853899 hasConcept C2779134260 @default.
- W3080853899 hasConcept C2779483572 @default.
- W3080853899 hasConcept C2779902710 @default.
- W3080853899 hasConcept C2780441642 @default.
- W3080853899 hasConcept C2910844529 @default.
- W3080853899 hasConcept C2984398910 @default.
- W3080853899 hasConcept C2989005 @default.
- W3080853899 hasConcept C3020647687 @default.
- W3080853899 hasConcept C41008148 @default.
- W3080853899 hasConcept C71924100 @default.
- W3080853899 hasConcept C81363708 @default.
- W3080853899 hasConceptScore W3080853899C126322002 @default.
- W3080853899 hasConceptScore W3080853899C126838900 @default.
- W3080853899 hasConceptScore W3080853899C154945302 @default.
- W3080853899 hasConceptScore W3080853899C164705383 @default.
- W3080853899 hasConceptScore W3080853899C2777767895 @default.
- W3080853899 hasConceptScore W3080853899C2778198053 @default.
- W3080853899 hasConceptScore W3080853899C2778548049 @default.
- W3080853899 hasConceptScore W3080853899C2779097696 @default.
- W3080853899 hasConceptScore W3080853899C2779134260 @default.
- W3080853899 hasConceptScore W3080853899C2779483572 @default.
- W3080853899 hasConceptScore W3080853899C2779902710 @default.
- W3080853899 hasConceptScore W3080853899C2780441642 @default.
- W3080853899 hasConceptScore W3080853899C2910844529 @default.
- W3080853899 hasConceptScore W3080853899C2984398910 @default.
- W3080853899 hasConceptScore W3080853899C2989005 @default.
- W3080853899 hasConceptScore W3080853899C3020647687 @default.
- W3080853899 hasConceptScore W3080853899C41008148 @default.
- W3080853899 hasConceptScore W3080853899C71924100 @default.
- W3080853899 hasConceptScore W3080853899C81363708 @default.
- W3080853899 hasLocation W30808538991 @default.
- W3080853899 hasOpenAccess W3080853899 @default.
- W3080853899 hasPrimaryLocation W30808538991 @default.
- W3080853899 hasRelatedWork W1543781282 @default.
- W3080853899 hasRelatedWork W2026842639 @default.
- W3080853899 hasRelatedWork W2063473981 @default.
- W3080853899 hasRelatedWork W2093015172 @default.
- W3080853899 hasRelatedWork W2143173103 @default.
- W3080853899 hasRelatedWork W2321023071 @default.
- W3080853899 hasRelatedWork W2337347809 @default.
- W3080853899 hasRelatedWork W2575864396 @default.
- W3080853899 hasRelatedWork W2752811812 @default.
- W3080853899 hasRelatedWork W276370577 @default.
- W3080853899 hasRelatedWork W2895248557 @default.
- W3080853899 hasRelatedWork W3015804597 @default.
- W3080853899 hasRelatedWork W3163097933 @default.
- W3080853899 hasRelatedWork W3164375001 @default.
- W3080853899 hasRelatedWork W3166550847 @default.
- W3080853899 hasRelatedWork W3197402392 @default.
- W3080853899 hasRelatedWork W68289864 @default.
- W3080853899 hasRelatedWork W842571258 @default.
- W3080853899 hasRelatedWork W91460990 @default.
- W3080853899 hasRelatedWork W2188319466 @default.
- W3080853899 hasVolume "61" @default.
- W3080853899 isParatext "false" @default.
- W3080853899 isRetracted "false" @default.
- W3080853899 magId "3080853899" @default.
- W3080853899 workType "article" @default.