Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080882303> ?p ?o ?g. }
- W3080882303 endingPage "233" @default.
- W3080882303 startingPage "219" @default.
- W3080882303 abstract "Surrogate-assisted evolutionary algorithms (SAEAs) have become one popular method to solve complex and computationally expensive optimization problems. However, most existing SAEAs suffer from performance degradation with the dimensionality increasing. To solve this issue, this article proposes a classifier-assisted level-based learning swarm optimizer on the basis of the level-based learning swarm optimizer (LLSO) and the gradient boosting classifier (GBC) to improve the robustness and scalability of SAEAs. Particularly, the level-based learning strategy in LLSO has a tight correspondence with the classification characteristic by setting the number of levels in LLSO to be the same as the number of classes in GBC. Together, the classification results feedback the distribution of promising candidates to accelerate the evolution of the optimizer, while the evolved population helps to improve the accuracy of the classifier. To select informative and valuable candidates for real evaluations, we devise an <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>${L}1$ </tex-math></inline-formula> -exploitation strategy to extensively exploit promising areas. Then, the candidate selection is conducted between the predicted <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>${L}1$ </tex-math></inline-formula> offspring and the already real-evaluated <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>${L}1$ </tex-math></inline-formula> individuals based on their Euclidean distances. Extensive experiments on commonly used benchmark functions demonstrate that the proposed optimizer can achieve competitive or better performance with a very small training dataset compared with three state-of-the-art SAEAs." @default.
- W3080882303 created "2020-09-01" @default.
- W3080882303 creator A5000394846 @default.
- W3080882303 creator A5016231511 @default.
- W3080882303 creator A5030040261 @default.
- W3080882303 creator A5030982545 @default.
- W3080882303 creator A5050385116 @default.
- W3080882303 creator A5051439492 @default.
- W3080882303 creator A5067265615 @default.
- W3080882303 date "2021-04-01" @default.
- W3080882303 modified "2023-10-16" @default.
- W3080882303 title "A Classifier-Assisted Level-Based Learning Swarm Optimizer for Expensive Optimization" @default.
- W3080882303 cites W1544496313 @default.
- W3080882303 cites W1548010335 @default.
- W3080882303 cites W1595159159 @default.
- W3080882303 cites W1596717185 @default.
- W3080882303 cites W1678356000 @default.
- W3080882303 cites W1972438797 @default.
- W3080882303 cites W1994005439 @default.
- W3080882303 cites W1999480972 @default.
- W3080882303 cites W2000503034 @default.
- W3080882303 cites W2011174137 @default.
- W3080882303 cites W2021379620 @default.
- W3080882303 cites W2034337422 @default.
- W3080882303 cites W2070493638 @default.
- W3080882303 cites W2074959697 @default.
- W3080882303 cites W2082228576 @default.
- W3080882303 cites W2096369439 @default.
- W3080882303 cites W2097571405 @default.
- W3080882303 cites W2103614420 @default.
- W3080882303 cites W2112036188 @default.
- W3080882303 cites W2118573797 @default.
- W3080882303 cites W2127884014 @default.
- W3080882303 cites W2136918060 @default.
- W3080882303 cites W2137471655 @default.
- W3080882303 cites W2143381319 @default.
- W3080882303 cites W2152195021 @default.
- W3080882303 cites W2167159964 @default.
- W3080882303 cites W2170333278 @default.
- W3080882303 cites W2336467679 @default.
- W3080882303 cites W2566693540 @default.
- W3080882303 cites W2587953039 @default.
- W3080882303 cites W2591927365 @default.
- W3080882303 cites W2679717297 @default.
- W3080882303 cites W2753899746 @default.
- W3080882303 cites W2785722638 @default.
- W3080882303 cites W2794706240 @default.
- W3080882303 cites W2800879376 @default.
- W3080882303 cites W2801960628 @default.
- W3080882303 cites W2891186800 @default.
- W3080882303 cites W2895700336 @default.
- W3080882303 cites W2896830898 @default.
- W3080882303 cites W2909347514 @default.
- W3080882303 cites W2910777435 @default.
- W3080882303 cites W2911994132 @default.
- W3080882303 cites W2940478829 @default.
- W3080882303 cites W2946914248 @default.
- W3080882303 cites W2957304166 @default.
- W3080882303 cites W3007576625 @default.
- W3080882303 cites W4247680473 @default.
- W3080882303 cites W79278033 @default.
- W3080882303 doi "https://doi.org/10.1109/tevc.2020.3017865" @default.
- W3080882303 hasPublicationYear "2021" @default.
- W3080882303 type Work @default.
- W3080882303 sameAs 3080882303 @default.
- W3080882303 citedByCount "46" @default.
- W3080882303 countsByYear W30808823032020 @default.
- W3080882303 countsByYear W30808823032021 @default.
- W3080882303 countsByYear W30808823032022 @default.
- W3080882303 countsByYear W30808823032023 @default.
- W3080882303 crossrefType "journal-article" @default.
- W3080882303 hasAuthorship W3080882303A5000394846 @default.
- W3080882303 hasAuthorship W3080882303A5016231511 @default.
- W3080882303 hasAuthorship W3080882303A5030040261 @default.
- W3080882303 hasAuthorship W3080882303A5030982545 @default.
- W3080882303 hasAuthorship W3080882303A5050385116 @default.
- W3080882303 hasAuthorship W3080882303A5051439492 @default.
- W3080882303 hasAuthorship W3080882303A5067265615 @default.
- W3080882303 hasConcept C104317684 @default.
- W3080882303 hasConcept C11413529 @default.
- W3080882303 hasConcept C119857082 @default.
- W3080882303 hasConcept C144024400 @default.
- W3080882303 hasConcept C149923435 @default.
- W3080882303 hasConcept C154945302 @default.
- W3080882303 hasConcept C159149176 @default.
- W3080882303 hasConcept C2908647359 @default.
- W3080882303 hasConcept C33923547 @default.
- W3080882303 hasConcept C41008148 @default.
- W3080882303 hasConcept C45357846 @default.
- W3080882303 hasConcept C48044578 @default.
- W3080882303 hasConcept C55493867 @default.
- W3080882303 hasConcept C63479239 @default.
- W3080882303 hasConcept C77088390 @default.
- W3080882303 hasConcept C86803240 @default.
- W3080882303 hasConcept C94375191 @default.
- W3080882303 hasConcept C95623464 @default.
- W3080882303 hasConceptScore W3080882303C104317684 @default.
- W3080882303 hasConceptScore W3080882303C11413529 @default.