Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080882994> ?p ?o ?g. }
- W3080882994 endingPage "113344" @default.
- W3080882994 startingPage "113344" @default.
- W3080882994 abstract "The efficient estimation of the failure probability function of rare failure events is a challenging task in the structural safety analysis when the input variables are characterized by imprecise probability models due to insufficient information on these variables. The recently developed non-intrusive imprecise stochastic simulation (NISS) provides a general, yet competitive, framework for dealing with this type of problems, and it has been shown that many classical stochastic simulation techniques, with suitable adequations, can be injected into this framework for tackling different types of problems in uncertainty quantification. This work aims at investigating the rare failure event analysis based on the global version of NISS and line sampling. A new method, called global imprecise line sampling (GILS), is firstly proposed, to efficiently estimate failure probability function with the same computational cost as classical line sampling. By joint sampling from both the aleatory and epistemic spaces, the GILS provides elegant estimators for the functional components of the failure probability. Then, to further reduce the computational cost, and improve its suitability for nonlinear problems, an imprecise active learning line sampling procedure is established by combining GILS with Gaussian process regression (GPR) with the target of adaptively exploring the aleatory and epistemic spaces within the framework of line sampling. Two analytical examples and two engineering applications demonstrate the efficiency and accuracy of the proposed methods." @default.
- W3080882994 created "2020-09-01" @default.
- W3080882994 creator A5004009271 @default.
- W3080882994 creator A5015951797 @default.
- W3080882994 creator A5073918982 @default.
- W3080882994 creator A5075358738 @default.
- W3080882994 date "2020-12-01" @default.
- W3080882994 modified "2023-10-16" @default.
- W3080882994 title "Adaptive reliability analysis for rare events evaluation with global imprecise line sampling" @default.
- W3080882994 cites W1572480955 @default.
- W3080882994 cites W1867780335 @default.
- W3080882994 cites W191413195 @default.
- W3080882994 cites W1985112216 @default.
- W3080882994 cites W1989648449 @default.
- W3080882994 cites W1989712184 @default.
- W3080882994 cites W1994390523 @default.
- W3080882994 cites W1999091229 @default.
- W3080882994 cites W2002506576 @default.
- W3080882994 cites W2003732947 @default.
- W3080882994 cites W2007535697 @default.
- W3080882994 cites W2009728221 @default.
- W3080882994 cites W2020041589 @default.
- W3080882994 cites W2027968505 @default.
- W3080882994 cites W2044778367 @default.
- W3080882994 cites W2046207241 @default.
- W3080882994 cites W2058542661 @default.
- W3080882994 cites W2085785960 @default.
- W3080882994 cites W2096285034 @default.
- W3080882994 cites W2111959010 @default.
- W3080882994 cites W2141480662 @default.
- W3080882994 cites W2168872920 @default.
- W3080882994 cites W2270827182 @default.
- W3080882994 cites W2280026779 @default.
- W3080882994 cites W2611228700 @default.
- W3080882994 cites W2612783399 @default.
- W3080882994 cites W2745767465 @default.
- W3080882994 cites W2771032237 @default.
- W3080882994 cites W2776703959 @default.
- W3080882994 cites W2905361149 @default.
- W3080882994 cites W2914900695 @default.
- W3080882994 cites W2917767553 @default.
- W3080882994 cites W2925351056 @default.
- W3080882994 cites W2954458927 @default.
- W3080882994 cites W2970027321 @default.
- W3080882994 cites W2970046639 @default.
- W3080882994 cites W2997857754 @default.
- W3080882994 cites W3004351911 @default.
- W3080882994 cites W3005181638 @default.
- W3080882994 cites W3044277952 @default.
- W3080882994 doi "https://doi.org/10.1016/j.cma.2020.113344" @default.
- W3080882994 hasPublicationYear "2020" @default.
- W3080882994 type Work @default.
- W3080882994 sameAs 3080882994 @default.
- W3080882994 citedByCount "18" @default.
- W3080882994 countsByYear W30808829942020 @default.
- W3080882994 countsByYear W30808829942021 @default.
- W3080882994 countsByYear W30808829942022 @default.
- W3080882994 countsByYear W30808829942023 @default.
- W3080882994 crossrefType "journal-article" @default.
- W3080882994 hasAuthorship W3080882994A5004009271 @default.
- W3080882994 hasAuthorship W3080882994A5015951797 @default.
- W3080882994 hasAuthorship W3080882994A5073918982 @default.
- W3080882994 hasAuthorship W3080882994A5075358738 @default.
- W3080882994 hasConcept C105795698 @default.
- W3080882994 hasConcept C106131492 @default.
- W3080882994 hasConcept C11413529 @default.
- W3080882994 hasConcept C119857082 @default.
- W3080882994 hasConcept C121332964 @default.
- W3080882994 hasConcept C126255220 @default.
- W3080882994 hasConcept C127413603 @default.
- W3080882994 hasConcept C14036430 @default.
- W3080882994 hasConcept C140779682 @default.
- W3080882994 hasConcept C163258240 @default.
- W3080882994 hasConcept C185429906 @default.
- W3080882994 hasConcept C19499675 @default.
- W3080882994 hasConcept C198352243 @default.
- W3080882994 hasConcept C200601418 @default.
- W3080882994 hasConcept C2524010 @default.
- W3080882994 hasConcept C2777317252 @default.
- W3080882994 hasConcept C2779662365 @default.
- W3080882994 hasConcept C31972630 @default.
- W3080882994 hasConcept C32230216 @default.
- W3080882994 hasConcept C33923547 @default.
- W3080882994 hasConcept C41008148 @default.
- W3080882994 hasConcept C43214815 @default.
- W3080882994 hasConcept C52740198 @default.
- W3080882994 hasConcept C62520636 @default.
- W3080882994 hasConcept C78458016 @default.
- W3080882994 hasConcept C86803240 @default.
- W3080882994 hasConceptScore W3080882994C105795698 @default.
- W3080882994 hasConceptScore W3080882994C106131492 @default.
- W3080882994 hasConceptScore W3080882994C11413529 @default.
- W3080882994 hasConceptScore W3080882994C119857082 @default.
- W3080882994 hasConceptScore W3080882994C121332964 @default.
- W3080882994 hasConceptScore W3080882994C126255220 @default.
- W3080882994 hasConceptScore W3080882994C127413603 @default.
- W3080882994 hasConceptScore W3080882994C14036430 @default.
- W3080882994 hasConceptScore W3080882994C140779682 @default.