Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080892009> ?p ?o ?g. }
- W3080892009 endingPage "113281" @default.
- W3080892009 startingPage "113281" @default.
- W3080892009 abstract "The free energy plays a fundamental role in descriptions of many systems in continuum physics. Notably, in multiphysics applications, it encodes thermodynamic coupling between different fields. It thereby gives rise to driving forces on the dynamics of interaction between the constituent phenomena. In mechano-chemically interacting materials systems, even consideration of only compositions, order parameters and strains can render the free energy to be reasonably high-dimensional. In proposing the free energy as a paradigm for scale bridging, we have previously exploited neural networks for their representation of such high-dimensional functions. Specifically, we have developed an integrable deep neural network (IDNN) that can be trained to free energy derivative data obtained from atomic scale models and statistical mechanics, then analytically integrated to recover a free energy density function. The motivation comes from the statistical mechanics formalism, in which certain free energy derivatives are accessible for control of the system, rather than the free energy itself. Our current work combines the IDNN with an active learning workflow to improve sampling of the free energy derivative data in a high-dimensional input space. Treated as input-output maps, machine learning accommodates role reversals between independent and dependent quantities as the mathematical descriptions change with scale bridging. As a prototypical system we focus on Ni-Al. Phase field simulations using the resulting IDNN representation for the free energy density of Ni-Al demonstrate that the appropriate physics of the material have been learned. To the best of our knowledge, this represents the most complete treatment of scale bridging, using the free energy for a practical materials system, that starts with electronic structure calculations and proceeds through statistical mechanics to continuum physics." @default.
- W3080892009 created "2020-09-01" @default.
- W3080892009 creator A5001153109 @default.
- W3080892009 creator A5018123365 @default.
- W3080892009 creator A5029764533 @default.
- W3080892009 creator A5035180513 @default.
- W3080892009 date "2020-11-01" @default.
- W3080892009 modified "2023-09-27" @default.
- W3080892009 title "Scale bridging materials physics: Active learning workflows and integrable deep neural networks for free energy function representations in alloys" @default.
- W3080892009 cites W1971653119 @default.
- W3080892009 cites W1978914865 @default.
- W3080892009 cites W1997826498 @default.
- W3080892009 cites W2013153382 @default.
- W3080892009 cites W2039932592 @default.
- W3080892009 cites W2041001120 @default.
- W3080892009 cites W2044893557 @default.
- W3080892009 cites W2046505730 @default.
- W3080892009 cites W2046528357 @default.
- W3080892009 cites W2060751110 @default.
- W3080892009 cites W2068905411 @default.
- W3080892009 cites W2093625674 @default.
- W3080892009 cites W2110930696 @default.
- W3080892009 cites W2126795354 @default.
- W3080892009 cites W2137374919 @default.
- W3080892009 cites W2140732747 @default.
- W3080892009 cites W2145632926 @default.
- W3080892009 cites W2314584210 @default.
- W3080892009 cites W2335446674 @default.
- W3080892009 cites W2399240576 @default.
- W3080892009 cites W2524210935 @default.
- W3080892009 cites W2597626167 @default.
- W3080892009 cites W2698273160 @default.
- W3080892009 cites W2766505193 @default.
- W3080892009 cites W2794552151 @default.
- W3080892009 cites W2806642578 @default.
- W3080892009 cites W2895857034 @default.
- W3080892009 cites W2898162346 @default.
- W3080892009 cites W2907233076 @default.
- W3080892009 cites W2908296241 @default.
- W3080892009 cites W2962706148 @default.
- W3080892009 cites W4298132949 @default.
- W3080892009 doi "https://doi.org/10.1016/j.cma.2020.113281" @default.
- W3080892009 hasPublicationYear "2020" @default.
- W3080892009 type Work @default.
- W3080892009 sameAs 3080892009 @default.
- W3080892009 citedByCount "19" @default.
- W3080892009 countsByYear W30808920092020 @default.
- W3080892009 countsByYear W30808920092021 @default.
- W3080892009 countsByYear W30808920092022 @default.
- W3080892009 countsByYear W30808920092023 @default.
- W3080892009 crossrefType "journal-article" @default.
- W3080892009 hasAuthorship W3080892009A5001153109 @default.
- W3080892009 hasAuthorship W3080892009A5018123365 @default.
- W3080892009 hasAuthorship W3080892009A5029764533 @default.
- W3080892009 hasAuthorship W3080892009A5035180513 @default.
- W3080892009 hasBestOaLocation W30808920091 @default.
- W3080892009 hasConcept C121332964 @default.
- W3080892009 hasConcept C121864883 @default.
- W3080892009 hasConcept C135628077 @default.
- W3080892009 hasConcept C141780669 @default.
- W3080892009 hasConcept C154945302 @default.
- W3080892009 hasConcept C174348530 @default.
- W3080892009 hasConcept C186370098 @default.
- W3080892009 hasConcept C200741047 @default.
- W3080892009 hasConcept C31258907 @default.
- W3080892009 hasConcept C37914503 @default.
- W3080892009 hasConcept C41008148 @default.
- W3080892009 hasConcept C46435376 @default.
- W3080892009 hasConcept C50644808 @default.
- W3080892009 hasConcept C62520636 @default.
- W3080892009 hasConcept C80444323 @default.
- W3080892009 hasConcept C97355855 @default.
- W3080892009 hasConcept C99874945 @default.
- W3080892009 hasConceptScore W3080892009C121332964 @default.
- W3080892009 hasConceptScore W3080892009C121864883 @default.
- W3080892009 hasConceptScore W3080892009C135628077 @default.
- W3080892009 hasConceptScore W3080892009C141780669 @default.
- W3080892009 hasConceptScore W3080892009C154945302 @default.
- W3080892009 hasConceptScore W3080892009C174348530 @default.
- W3080892009 hasConceptScore W3080892009C186370098 @default.
- W3080892009 hasConceptScore W3080892009C200741047 @default.
- W3080892009 hasConceptScore W3080892009C31258907 @default.
- W3080892009 hasConceptScore W3080892009C37914503 @default.
- W3080892009 hasConceptScore W3080892009C41008148 @default.
- W3080892009 hasConceptScore W3080892009C46435376 @default.
- W3080892009 hasConceptScore W3080892009C50644808 @default.
- W3080892009 hasConceptScore W3080892009C62520636 @default.
- W3080892009 hasConceptScore W3080892009C80444323 @default.
- W3080892009 hasConceptScore W3080892009C97355855 @default.
- W3080892009 hasConceptScore W3080892009C99874945 @default.
- W3080892009 hasFunder F4320306076 @default.
- W3080892009 hasFunder F4320315934 @default.
- W3080892009 hasFunder F4320332180 @default.
- W3080892009 hasLocation W30808920091 @default.
- W3080892009 hasLocation W30808920092 @default.
- W3080892009 hasOpenAccess W3080892009 @default.
- W3080892009 hasPrimaryLocation W30808920091 @default.
- W3080892009 hasRelatedWork W1552428517 @default.