Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080896407> ?p ?o ?g. }
- W3080896407 abstract "Abstract Background Identification and characterization of new traits with sound physiological foundation is essential for crop breeding and production management. Deep learning has been widely used in image data analysis to explore spatial and temporal information on crop growth and development, thus strengthening the power of identification of physiological traits. Taking the advantage of deep learning, this study aims to develop a novel trait of canopy structure that integrate source and sink in japonica rice. Results We applied a deep learning approach to accurately segment leaf and panicle, and subsequently developed the procedure of GvCrop to calculate the leaf to panicle ratio (LPR) of rice canopy during grain filling stage. Images of training dataset were captured in the field experiments, with large variations in camera shooting angle, the elevation and the azimuth angles of the sun, rice genotype, and plant phenological stages. Accurately labeled by manually annotating the panicle and leaf regions, the resulting dataset were used to train FPN-Mask (Feature Pyramid Network Mask) models, consisting of a backbone network and a task-specific sub-network. The model with the highest accuracy was then selected to check the variations in LPR among 192 rice germplasms and among agronomical practices. Despite the challenging field conditions, FPN-Mask models achieved a high detection accuracy, with Pixel Accuracy being 0.99 for panicles and 0.98 for leaves. The calculated LPR displayed large spatial and temporal variations as well as genotypic differences. In addition, it was responsive to agronomical practices such as nitrogen fertilization and spraying of plant growth regulators. Conclusion Deep learning technique can achieve high accuracy in simultaneous detection of panicle and leaf data from complex rice field images. The proposed FPN-Mask model is applicable to detect and quantify crop performance under field conditions. The newly identified trait of LPR should provide a high throughput protocol for breeders to select superior rice cultivars as well as for agronomists to precisely manage field crops that have a good balance of source and sink." @default.
- W3080896407 created "2020-09-01" @default.
- W3080896407 creator A5003764862 @default.
- W3080896407 creator A5014968449 @default.
- W3080896407 creator A5029523209 @default.
- W3080896407 creator A5036765718 @default.
- W3080896407 creator A5044094174 @default.
- W3080896407 creator A5048961502 @default.
- W3080896407 creator A5076882738 @default.
- W3080896407 creator A5088313229 @default.
- W3080896407 date "2020-08-26" @default.
- W3080896407 modified "2023-10-17" @default.
- W3080896407 title "Leaf to panicle ratio (LPR): a new physiological trait indicative of source and sink relation in japonica rice based on deep learning" @default.
- W3080896407 cites W1181899764 @default.
- W3080896407 cites W1677182931 @default.
- W3080896407 cites W1721723980 @default.
- W3080896407 cites W1867156515 @default.
- W3080896407 cites W1975412478 @default.
- W3080896407 cites W2044544958 @default.
- W3080896407 cites W2118246710 @default.
- W3080896407 cites W2127293692 @default.
- W3080896407 cites W2157604171 @default.
- W3080896407 cites W2157825442 @default.
- W3080896407 cites W2164149251 @default.
- W3080896407 cites W2194775991 @default.
- W3080896407 cites W2273297058 @default.
- W3080896407 cites W2278049277 @default.
- W3080896407 cites W2305242159 @default.
- W3080896407 cites W2310750431 @default.
- W3080896407 cites W2358955923 @default.
- W3080896407 cites W2547698067 @default.
- W3080896407 cites W2560023338 @default.
- W3080896407 cites W2565639579 @default.
- W3080896407 cites W2597369130 @default.
- W3080896407 cites W2618530766 @default.
- W3080896407 cites W2734268260 @default.
- W3080896407 cites W2768265868 @default.
- W3080896407 cites W2791878475 @default.
- W3080896407 cites W2792794208 @default.
- W3080896407 cites W2793323341 @default.
- W3080896407 cites W2805916667 @default.
- W3080896407 cites W2807833258 @default.
- W3080896407 cites W2884561390 @default.
- W3080896407 cites W2884822772 @default.
- W3080896407 cites W2891063372 @default.
- W3080896407 cites W2891682150 @default.
- W3080896407 cites W2901871634 @default.
- W3080896407 cites W2966737857 @default.
- W3080896407 cites W2971281060 @default.
- W3080896407 cites W2974503353 @default.
- W3080896407 cites W2994639114 @default.
- W3080896407 cites W3002058427 @default.
- W3080896407 cites W3003662894 @default.
- W3080896407 cites W3106098994 @default.
- W3080896407 cites W4233070360 @default.
- W3080896407 doi "https://doi.org/10.1186/s13007-020-00660-y" @default.
- W3080896407 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7449046" @default.
- W3080896407 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32863854" @default.
- W3080896407 hasPublicationYear "2020" @default.
- W3080896407 type Work @default.
- W3080896407 sameAs 3080896407 @default.
- W3080896407 citedByCount "18" @default.
- W3080896407 countsByYear W30808964072021 @default.
- W3080896407 countsByYear W30808964072022 @default.
- W3080896407 countsByYear W30808964072023 @default.
- W3080896407 crossrefType "journal-article" @default.
- W3080896407 hasAuthorship W3080896407A5003764862 @default.
- W3080896407 hasAuthorship W3080896407A5014968449 @default.
- W3080896407 hasAuthorship W3080896407A5029523209 @default.
- W3080896407 hasAuthorship W3080896407A5036765718 @default.
- W3080896407 hasAuthorship W3080896407A5044094174 @default.
- W3080896407 hasAuthorship W3080896407A5048961502 @default.
- W3080896407 hasAuthorship W3080896407A5076882738 @default.
- W3080896407 hasAuthorship W3080896407A5088313229 @default.
- W3080896407 hasBestOaLocation W30808964071 @default.
- W3080896407 hasConcept C101000010 @default.
- W3080896407 hasConcept C106934330 @default.
- W3080896407 hasConcept C108583219 @default.
- W3080896407 hasConcept C127413603 @default.
- W3080896407 hasConcept C154945302 @default.
- W3080896407 hasConcept C199360897 @default.
- W3080896407 hasConcept C25989453 @default.
- W3080896407 hasConcept C2779409272 @default.
- W3080896407 hasConcept C39432304 @default.
- W3080896407 hasConcept C41008148 @default.
- W3080896407 hasConcept C59822182 @default.
- W3080896407 hasConcept C6557445 @default.
- W3080896407 hasConcept C75337361 @default.
- W3080896407 hasConcept C85582077 @default.
- W3080896407 hasConcept C86803240 @default.
- W3080896407 hasConcept C88463610 @default.
- W3080896407 hasConceptScore W3080896407C101000010 @default.
- W3080896407 hasConceptScore W3080896407C106934330 @default.
- W3080896407 hasConceptScore W3080896407C108583219 @default.
- W3080896407 hasConceptScore W3080896407C127413603 @default.
- W3080896407 hasConceptScore W3080896407C154945302 @default.
- W3080896407 hasConceptScore W3080896407C199360897 @default.
- W3080896407 hasConceptScore W3080896407C25989453 @default.
- W3080896407 hasConceptScore W3080896407C2779409272 @default.
- W3080896407 hasConceptScore W3080896407C39432304 @default.