Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080920065> ?p ?o ?g. }
- W3080920065 abstract "The size and quality of chemical libraries to the drug discovery pipeline are crucial for developing new drugs or repurposing existing drugs. Existing techniques such as combinatorial organic synthesis and High-Throughput Screening usually make the process extraordinarily tough and complicated since the search space of synthetically feasible drugs is exorbitantly huge. While reinforcement learning has been mostly exploited in the literature for generating novel compounds, the requirement of designing a reward function that succinctly represents the learning objective could prove daunting in certain complex domains. Generative Adversarial Network-based methods also mostly discard the discriminator after training and could be hard to train. In this study, we propose a framework for training a compound generator and learning a transferable reward function based on the entropy maximization inverse reinforcement learning paradigm. We show from our experiments that the inverse reinforcement learning route offers a rational alternative for generating chemical compounds in domains where reward function engineering may be less appealing or impossible while data exhibiting the desired objective is readily available." @default.
- W3080920065 created "2020-09-01" @default.
- W3080920065 creator A5013765647 @default.
- W3080920065 creator A5023471475 @default.
- W3080920065 creator A5037211171 @default.
- W3080920065 creator A5043459846 @default.
- W3080920065 creator A5083018515 @default.
- W3080920065 creator A5084017739 @default.
- W3080920065 date "2020-07-24" @default.
- W3080920065 modified "2023-09-27" @default.
- W3080920065 title "Deep Inverse Reinforcement Learning for Structural Evolution of Small Molecules" @default.
- W3080920065 cites W1514535095 @default.
- W3080920065 cites W1732222442 @default.
- W3080920065 cites W1771410628 @default.
- W3080920065 cites W1929981607 @default.
- W3080920065 cites W1975147762 @default.
- W3080920065 cites W1975875968 @default.
- W3080920065 cites W1998767819 @default.
- W3080920065 cites W2023818227 @default.
- W3080920065 cites W2061562262 @default.
- W3080920065 cites W2098774185 @default.
- W3080920065 cites W2137052779 @default.
- W3080920065 cites W2160592148 @default.
- W3080920065 cites W2294516783 @default.
- W3080920065 cites W2523469089 @default.
- W3080920065 cites W2565050364 @default.
- W3080920065 cites W2566467060 @default.
- W3080920065 cites W2578240541 @default.
- W3080920065 cites W2593632281 @default.
- W3080920065 cites W2610148085 @default.
- W3080920065 cites W2618625858 @default.
- W3080920065 cites W2736601468 @default.
- W3080920065 cites W2745868649 @default.
- W3080920065 cites W2746340587 @default.
- W3080920065 cites W2752843037 @default.
- W3080920065 cites W2805002767 @default.
- W3080920065 cites W2809461852 @default.
- W3080920065 cites W2860192827 @default.
- W3080920065 cites W2949608212 @default.
- W3080920065 cites W2963184621 @default.
- W3080920065 cites W2963277051 @default.
- W3080920065 cites W2963590100 @default.
- W3080920065 cites W2964201867 @default.
- W3080920065 cites W2964308564 @default.
- W3080920065 cites W2968837741 @default.
- W3080920065 cites W2979214993 @default.
- W3080920065 cites W2980433389 @default.
- W3080920065 cites W2995908837 @default.
- W3080920065 cites W3003375694 @default.
- W3080920065 cites W3022905129 @default.
- W3080920065 cites W3100545487 @default.
- W3080920065 cites W3100751385 @default.
- W3080920065 hasPublicationYear "2020" @default.
- W3080920065 type Work @default.
- W3080920065 sameAs 3080920065 @default.
- W3080920065 citedByCount "0" @default.
- W3080920065 crossrefType "posted-content" @default.
- W3080920065 hasAuthorship W3080920065A5013765647 @default.
- W3080920065 hasAuthorship W3080920065A5023471475 @default.
- W3080920065 hasAuthorship W3080920065A5037211171 @default.
- W3080920065 hasAuthorship W3080920065A5043459846 @default.
- W3080920065 hasAuthorship W3080920065A5083018515 @default.
- W3080920065 hasAuthorship W3080920065A5084017739 @default.
- W3080920065 hasConcept C111919701 @default.
- W3080920065 hasConcept C119857082 @default.
- W3080920065 hasConcept C14036430 @default.
- W3080920065 hasConcept C154945302 @default.
- W3080920065 hasConcept C2779803651 @default.
- W3080920065 hasConcept C39890363 @default.
- W3080920065 hasConcept C41008148 @default.
- W3080920065 hasConcept C60644358 @default.
- W3080920065 hasConcept C74187038 @default.
- W3080920065 hasConcept C76155785 @default.
- W3080920065 hasConcept C78458016 @default.
- W3080920065 hasConcept C86803240 @default.
- W3080920065 hasConcept C94915269 @default.
- W3080920065 hasConcept C97541855 @default.
- W3080920065 hasConcept C98045186 @default.
- W3080920065 hasConcept C99726746 @default.
- W3080920065 hasConceptScore W3080920065C111919701 @default.
- W3080920065 hasConceptScore W3080920065C119857082 @default.
- W3080920065 hasConceptScore W3080920065C14036430 @default.
- W3080920065 hasConceptScore W3080920065C154945302 @default.
- W3080920065 hasConceptScore W3080920065C2779803651 @default.
- W3080920065 hasConceptScore W3080920065C39890363 @default.
- W3080920065 hasConceptScore W3080920065C41008148 @default.
- W3080920065 hasConceptScore W3080920065C60644358 @default.
- W3080920065 hasConceptScore W3080920065C74187038 @default.
- W3080920065 hasConceptScore W3080920065C76155785 @default.
- W3080920065 hasConceptScore W3080920065C78458016 @default.
- W3080920065 hasConceptScore W3080920065C86803240 @default.
- W3080920065 hasConceptScore W3080920065C94915269 @default.
- W3080920065 hasConceptScore W3080920065C97541855 @default.
- W3080920065 hasConceptScore W3080920065C98045186 @default.
- W3080920065 hasConceptScore W3080920065C99726746 @default.
- W3080920065 hasLocation W30809200651 @default.
- W3080920065 hasOpenAccess W3080920065 @default.
- W3080920065 hasPrimaryLocation W30809200651 @default.
- W3080920065 hasRelatedWork W1535586732 @default.
- W3080920065 hasRelatedWork W2025448855 @default.