Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080961031> ?p ?o ?g. }
- W3080961031 abstract "There is no consensus on which statistical model estimates school value-added (VA) most accurately. To date, the two most common statistical models used for the calculation of VA scores are two classical methods: linear regression and multilevel models. These models have the advantage of being relatively transparent and thus understandable for most researchers and practitioners. However, these statistical models are bound to certain assumptions (e.g., linearity) that might limit their prediction accuracy. Machine learning methods, which have yielded spectacular results in numerous fields, may be a valuable alternative to these classical models. Although big data is not new in general, it is relatively new in the realm of social sciences and education. New types of data require new data analytical approaches. Such techniques have already evolved in fields with a long tradition in crunching big data (e.g., gene technology). The objective of the present paper is to competently apply these “imported” techniques to education data, more precisely VA scores, and assess when and how they can extend or replace the classical psychometrics toolbox. The different models include linear and nonlinear methods and extend classical models with the most commonly used machine learning methods (i.e., random forest, neural networks, support vector machines, and boosting). We used representative data of 3,026 students in 153 schools who took part in the standardized achievement tests of the Luxembourg School Monitoring Program in grades 1 and 3. Multilevel models outperformed classical linear and polynomial regressions, as well as different machine learning models. However, it could be observed that across all schools, school VA scores from different model types correlated highly. Yet, the percentage of disagreements as compared to multilevel models was not trivial and real-life implications for individual schools may still be dramatic depending on the model type used. Implications of these results and possible ethical concerns regarding the use of machine learning methods for decision-making in education are discussed." @default.
- W3080961031 created "2020-09-01" @default.
- W3080961031 creator A5007653553 @default.
- W3080961031 creator A5049059166 @default.
- W3080961031 creator A5049097190 @default.
- W3080961031 creator A5067205873 @default.
- W3080961031 creator A5073026381 @default.
- W3080961031 creator A5078885886 @default.
- W3080961031 date "2020-08-21" @default.
- W3080961031 modified "2023-10-16" @default.
- W3080961031 title "Contrasting Classical and Machine Learning Approaches in the Estimation of Value-Added Scores in Large-Scale Educational Data" @default.
- W3080961031 cites W1513618424 @default.
- W3080961031 cites W1951724000 @default.
- W3080961031 cites W1977225123 @default.
- W3080961031 cites W2006444123 @default.
- W3080961031 cites W2016981279 @default.
- W3080961031 cites W2022276698 @default.
- W3080961031 cites W2027711578 @default.
- W3080961031 cites W2054608048 @default.
- W3080961031 cites W2063084079 @default.
- W3080961031 cites W2075085906 @default.
- W3080961031 cites W2093804182 @default.
- W3080961031 cites W2095234124 @default.
- W3080961031 cites W2104818169 @default.
- W3080961031 cites W2112223757 @default.
- W3080961031 cites W2119923885 @default.
- W3080961031 cites W2135625537 @default.
- W3080961031 cites W2141931657 @default.
- W3080961031 cites W2146296740 @default.
- W3080961031 cites W2149755306 @default.
- W3080961031 cites W2157963336 @default.
- W3080961031 cites W2159397589 @default.
- W3080961031 cites W2294369017 @default.
- W3080961031 cites W2755856151 @default.
- W3080961031 cites W2766447205 @default.
- W3080961031 cites W2784576540 @default.
- W3080961031 cites W2787894218 @default.
- W3080961031 cites W2788796681 @default.
- W3080961031 cites W2884051140 @default.
- W3080961031 cites W2898438610 @default.
- W3080961031 cites W2914880710 @default.
- W3080961031 cites W2915829734 @default.
- W3080961031 cites W2918867374 @default.
- W3080961031 cites W2945459205 @default.
- W3080961031 cites W2949682566 @default.
- W3080961031 cites W2966844218 @default.
- W3080961031 cites W2968929739 @default.
- W3080961031 cites W2973983839 @default.
- W3080961031 cites W3000065748 @default.
- W3080961031 cites W3005006660 @default.
- W3080961031 cites W3013760681 @default.
- W3080961031 cites W3015298432 @default.
- W3080961031 cites W3015409059 @default.
- W3080961031 cites W3017366308 @default.
- W3080961031 cites W3031135337 @default.
- W3080961031 cites W3036842244 @default.
- W3080961031 cites W4242208192 @default.
- W3080961031 cites W429766147 @default.
- W3080961031 doi "https://doi.org/10.3389/fpsyg.2020.02190" @default.
- W3080961031 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7472739" @default.
- W3080961031 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32973639" @default.
- W3080961031 hasPublicationYear "2020" @default.
- W3080961031 type Work @default.
- W3080961031 sameAs 3080961031 @default.
- W3080961031 citedByCount "5" @default.
- W3080961031 countsByYear W30809610312020 @default.
- W3080961031 countsByYear W30809610312021 @default.
- W3080961031 countsByYear W30809610312022 @default.
- W3080961031 crossrefType "journal-article" @default.
- W3080961031 hasAuthorship W3080961031A5007653553 @default.
- W3080961031 hasAuthorship W3080961031A5049059166 @default.
- W3080961031 hasAuthorship W3080961031A5049097190 @default.
- W3080961031 hasAuthorship W3080961031A5067205873 @default.
- W3080961031 hasAuthorship W3080961031A5073026381 @default.
- W3080961031 hasAuthorship W3080961031A5078885886 @default.
- W3080961031 hasBestOaLocation W30809610311 @default.
- W3080961031 hasConcept C114289077 @default.
- W3080961031 hasConcept C119857082 @default.
- W3080961031 hasConcept C12267149 @default.
- W3080961031 hasConcept C124101348 @default.
- W3080961031 hasConcept C154945302 @default.
- W3080961031 hasConcept C163175372 @default.
- W3080961031 hasConcept C169258074 @default.
- W3080961031 hasConcept C199360897 @default.
- W3080961031 hasConcept C2776291640 @default.
- W3080961031 hasConcept C2777655017 @default.
- W3080961031 hasConcept C41008148 @default.
- W3080961031 hasConcept C50644808 @default.
- W3080961031 hasConcept C53059260 @default.
- W3080961031 hasConcept C75684735 @default.
- W3080961031 hasConceptScore W3080961031C114289077 @default.
- W3080961031 hasConceptScore W3080961031C119857082 @default.
- W3080961031 hasConceptScore W3080961031C12267149 @default.
- W3080961031 hasConceptScore W3080961031C124101348 @default.
- W3080961031 hasConceptScore W3080961031C154945302 @default.
- W3080961031 hasConceptScore W3080961031C163175372 @default.
- W3080961031 hasConceptScore W3080961031C169258074 @default.
- W3080961031 hasConceptScore W3080961031C199360897 @default.
- W3080961031 hasConceptScore W3080961031C2776291640 @default.
- W3080961031 hasConceptScore W3080961031C2777655017 @default.