Matches in SemOpenAlex for { <https://semopenalex.org/work/W3080963507> ?p ?o ?g. }
- W3080963507 endingPage "112013" @default.
- W3080963507 startingPage "112013" @default.
- W3080963507 abstract "Abstract Satellite-derived phenology metrics are valuable tools for understanding broad-scale patterns and changes in vegetated landscapes over time. However, the extraction and interpretation of phenology in ecosystems with subtle growth dynamics can be challenging. US National Park Service monitoring of evergreen pinyon-juniper ecosystems in the western US revealed an unexpected winter-peaking phenological pattern in normalized difference vegetation index (NDVI) time-series derived from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. In this paper, we assess the validity of the winter peaks through ground-based observation of phenology and examination of solar and satellite geometry effects. To test the premise of a true vegetation response, we analyzed NDVI values extracted from a time series of ground-based digital camera (‘phenocam’) images collected September 2017 to December 2018 in a pinyon-juniper woodland in Arizona, US. Results show pinyon and juniper growth peaked in the warm season, as did the other species in the phenocam field of view. NDVI time series from four other sensors (Landsat 7, Sentinel-2, VIIRS, and Proba-V) confirmed that winter peaks in this ecosystem are not limited to MODIS products. Examination of NDVI time series (2003–2018) derived from daily 250-m MODIS data in the broader pinyon-juniper ecosystem revealed that solar-to-sensor angle, sensor zenith angle, and forward/back-scatter reflectance explained >80% of intra-annual variability. Solar-to-sensor angle exerted the greatest control, and the direction of its correlation (positive) was the opposite of that which would be expected if it were driven by vegetation greenness. Solar-to-sensor angle is controlled seasonally by solar zenith angle and daily by variations in satellite overpass geometry. We mapped winter peaks across the western US in Google Earth Engine using 500-m MODIS MCD43A4 data, which correct for reflectance differences caused by view angle. In areas where winter vegetation peaks are ecologically improbable (i.e., locations with sub-freezing December temperatures), consistent winter peaks (≥ 14 years in 2003 to 2018) are widespread in both pinyon-juniper and non-pinyon-juniper conifer ecosystems; winter peaks are common (≥ 5 years in 2003 to 2018) across areas of shrubland. We attribute winter peaks to the positive correlation of NDVI with solar-to-sensor angle and solar zenith angle in combination with sparse, vertically oriented evergreen vegetation canopies. Increasing shadow visibility has been shown to increase overall NDVI, and the prevalence of the winter peaking in evergreen western sparse canopy ecosystems is consistent with this hypothesis. The extent of winter peaking patterns may have been previously overlooked due to temporal compositing, curve fitting, and incomplete snow screening." @default.
- W3080963507 created "2020-09-01" @default.
- W3080963507 creator A5016729943 @default.
- W3080963507 creator A5024459796 @default.
- W3080963507 date "2020-11-01" @default.
- W3080963507 modified "2023-10-17" @default.
- W3080963507 title "Solar and sensor geometry, not vegetation response, drive satellite NDVI phenology in widespread ecosystems of the western United States" @default.
- W3080963507 cites W1471460219 @default.
- W3080963507 cites W1685317713 @default.
- W3080963507 cites W1847958513 @default.
- W3080963507 cites W1946710007 @default.
- W3080963507 cites W1966711117 @default.
- W3080963507 cites W1970186303 @default.
- W3080963507 cites W1981717921 @default.
- W3080963507 cites W1989653652 @default.
- W3080963507 cites W1996463620 @default.
- W3080963507 cites W1996942284 @default.
- W3080963507 cites W2002290084 @default.
- W3080963507 cites W2004733013 @default.
- W3080963507 cites W2005299120 @default.
- W3080963507 cites W2007650489 @default.
- W3080963507 cites W2009302551 @default.
- W3080963507 cites W2012133636 @default.
- W3080963507 cites W2015208019 @default.
- W3080963507 cites W2027690707 @default.
- W3080963507 cites W2033164394 @default.
- W3080963507 cites W2036627824 @default.
- W3080963507 cites W2038879478 @default.
- W3080963507 cites W2038927660 @default.
- W3080963507 cites W2041177409 @default.
- W3080963507 cites W2046450726 @default.
- W3080963507 cites W2047277259 @default.
- W3080963507 cites W2056317258 @default.
- W3080963507 cites W2057313563 @default.
- W3080963507 cites W2058215785 @default.
- W3080963507 cites W2058530626 @default.
- W3080963507 cites W2061548250 @default.
- W3080963507 cites W2063623478 @default.
- W3080963507 cites W2067102912 @default.
- W3080963507 cites W2073246534 @default.
- W3080963507 cites W2076355364 @default.
- W3080963507 cites W2080573155 @default.
- W3080963507 cites W2080784355 @default.
- W3080963507 cites W2083615851 @default.
- W3080963507 cites W2089458048 @default.
- W3080963507 cites W2108221338 @default.
- W3080963507 cites W2109382956 @default.
- W3080963507 cites W2113552194 @default.
- W3080963507 cites W2114456168 @default.
- W3080963507 cites W2119370997 @default.
- W3080963507 cites W2122400352 @default.
- W3080963507 cites W2124564759 @default.
- W3080963507 cites W2127034429 @default.
- W3080963507 cites W2128841554 @default.
- W3080963507 cites W2138448722 @default.
- W3080963507 cites W2138629019 @default.
- W3080963507 cites W2140944264 @default.
- W3080963507 cites W2145919800 @default.
- W3080963507 cites W2148531999 @default.
- W3080963507 cites W2152092242 @default.
- W3080963507 cites W2155728864 @default.
- W3080963507 cites W2163563924 @default.
- W3080963507 cites W2174597041 @default.
- W3080963507 cites W2177613209 @default.
- W3080963507 cites W2206884203 @default.
- W3080963507 cites W2225185554 @default.
- W3080963507 cites W2264753535 @default.
- W3080963507 cites W2280673236 @default.
- W3080963507 cites W2315709310 @default.
- W3080963507 cites W2467703017 @default.
- W3080963507 cites W2471604445 @default.
- W3080963507 cites W2516162413 @default.
- W3080963507 cites W2529061003 @default.
- W3080963507 cites W2552034017 @default.
- W3080963507 cites W2626395602 @default.
- W3080963507 cites W2725897987 @default.
- W3080963507 cites W2767410253 @default.
- W3080963507 cites W2773717538 @default.
- W3080963507 cites W2792336367 @default.
- W3080963507 cites W2792730387 @default.
- W3080963507 cites W2794421859 @default.
- W3080963507 cites W28693142 @default.
- W3080963507 cites W2909770101 @default.
- W3080963507 cites W2918417245 @default.
- W3080963507 cites W2950891428 @default.
- W3080963507 doi "https://doi.org/10.1016/j.rse.2020.112013" @default.
- W3080963507 hasPublicationYear "2020" @default.
- W3080963507 type Work @default.
- W3080963507 sameAs 3080963507 @default.
- W3080963507 citedByCount "27" @default.
- W3080963507 countsByYear W30809635072020 @default.
- W3080963507 countsByYear W30809635072021 @default.
- W3080963507 countsByYear W30809635072022 @default.
- W3080963507 countsByYear W30809635072023 @default.
- W3080963507 crossrefType "journal-article" @default.
- W3080963507 hasAuthorship W3080963507A5016729943 @default.
- W3080963507 hasAuthorship W3080963507A5024459796 @default.
- W3080963507 hasBestOaLocation W30809635071 @default.