Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081002364> ?p ?o ?g. }
- W3081002364 abstract "In this thesis, we settle the computational complexity of some fundamental questions in polynomial optimization. These include the questions of (i) finding a local minimum, (ii) testing local minimality of a point, and (iii) deciding attainment of the optimal value. Our results characterize the complexity of these three questions for all degrees of the defining polynomials left open by prior literature. Regarding (i) and (ii), we show that unless P=NP, there cannot be a polynomial-time algorithm that finds a point within Euclidean distance $c^n$ (for any constant $c$) of a local minimum of an $n$-variate quadratic program. By contrast, we show that a local minimum of a cubic polynomial can be found efficiently by semidefinite programming (SDP). We prove that second-order points of cubic polynomials admit an efficient semidefinite representation, even though their critical points are NP-hard to find. We also give an efficiently-checkable necessary and sufficient condition for local minimality of a point for a cubic polynomial. Regarding (iii), we prove that testing whether a quadratically constrained quadratic program with a finite optimal value has an optimal solution is NP-hard. We also show that testing coercivity of the objective function, compactness of the feasible set, and the Archimedean property associated with the description of the feasible set are all NP-hard. We also give a new characterization of coercive polynomials that lends itself to a hierarchy of SDPs. In our final chapter, we present an SDP relaxation for finding approximate Nash equilibria in bimatrix games. We show that for a symmetric game, a $1/3$-Nash equilibrium can be efficiently recovered from any rank-2 solution to this relaxation. We also propose SDP relaxations for NP-hard problems related to Nash equilibria, such as that of finding the highest achievable welfare under any Nash equilibrium." @default.
- W3081002364 created "2020-09-01" @default.
- W3081002364 creator A5034134465 @default.
- W3081002364 date "2020-08-27" @default.
- W3081002364 modified "2023-09-27" @default.
- W3081002364 title "Complexity Aspects of Fundamental Questions in Polynomial Optimization" @default.
- W3081002364 cites W1120782848 @default.
- W3081002364 cites W1486829250 @default.
- W3081002364 cites W1487444668 @default.
- W3081002364 cites W1531609333 @default.
- W3081002364 cites W1549186681 @default.
- W3081002364 cites W1553142094 @default.
- W3081002364 cites W1585205451 @default.
- W3081002364 cites W1590002045 @default.
- W3081002364 cites W1596717185 @default.
- W3081002364 cites W1725063609 @default.
- W3081002364 cites W1807884544 @default.
- W3081002364 cites W1833752784 @default.
- W3081002364 cites W1884347414 @default.
- W3081002364 cites W1886027077 @default.
- W3081002364 cites W1963753244 @default.
- W3081002364 cites W1967184028 @default.
- W3081002364 cites W1967344706 @default.
- W3081002364 cites W1969962394 @default.
- W3081002364 cites W1974962384 @default.
- W3081002364 cites W1985123706 @default.
- W3081002364 cites W1988622494 @default.
- W3081002364 cites W1988709433 @default.
- W3081002364 cites W2002373723 @default.
- W3081002364 cites W2004457174 @default.
- W3081002364 cites W2004732730 @default.
- W3081002364 cites W2006401754 @default.
- W3081002364 cites W2010124699 @default.
- W3081002364 cites W2013603106 @default.
- W3081002364 cites W2013815105 @default.
- W3081002364 cites W2018556306 @default.
- W3081002364 cites W2021872351 @default.
- W3081002364 cites W2026177035 @default.
- W3081002364 cites W2027470314 @default.
- W3081002364 cites W2028777326 @default.
- W3081002364 cites W2030072108 @default.
- W3081002364 cites W2031494345 @default.
- W3081002364 cites W203192772 @default.
- W3081002364 cites W2032951732 @default.
- W3081002364 cites W2033040247 @default.
- W3081002364 cites W2037887312 @default.
- W3081002364 cites W2039526985 @default.
- W3081002364 cites W2050958701 @default.
- W3081002364 cites W2062075554 @default.
- W3081002364 cites W2062200659 @default.
- W3081002364 cites W2063194632 @default.
- W3081002364 cites W2065706751 @default.
- W3081002364 cites W2069764498 @default.
- W3081002364 cites W2072642243 @default.
- W3081002364 cites W2078289947 @default.
- W3081002364 cites W2079135578 @default.
- W3081002364 cites W2083639782 @default.
- W3081002364 cites W2085352155 @default.
- W3081002364 cites W2089649903 @default.
- W3081002364 cites W2091556228 @default.
- W3081002364 cites W2094995801 @default.
- W3081002364 cites W2100440346 @default.
- W3081002364 cites W2102461053 @default.
- W3081002364 cites W2107065549 @default.
- W3081002364 cites W2108614294 @default.
- W3081002364 cites W2112794046 @default.
- W3081002364 cites W2118550318 @default.
- W3081002364 cites W2120146316 @default.
- W3081002364 cites W2120177315 @default.
- W3081002364 cites W2125467036 @default.
- W3081002364 cites W2126211987 @default.
- W3081002364 cites W2128324713 @default.
- W3081002364 cites W2135046866 @default.
- W3081002364 cites W2136105862 @default.
- W3081002364 cites W2136885855 @default.
- W3081002364 cites W2141661427 @default.
- W3081002364 cites W2152557171 @default.
- W3081002364 cites W2162985064 @default.
- W3081002364 cites W2165281529 @default.
- W3081002364 cites W2166566648 @default.
- W3081002364 cites W2168602797 @default.
- W3081002364 cites W2179957089 @default.
- W3081002364 cites W2268784238 @default.
- W3081002364 cites W2292587149 @default.
- W3081002364 cites W2318268489 @default.
- W3081002364 cites W2330024298 @default.
- W3081002364 cites W2611147814 @default.
- W3081002364 cites W2798766386 @default.
- W3081002364 cites W2808862920 @default.
- W3081002364 cites W2905994781 @default.
- W3081002364 cites W2963687412 @default.
- W3081002364 cites W2963840269 @default.
- W3081002364 cites W2963961403 @default.
- W3081002364 cites W2964328813 @default.
- W3081002364 cites W3009355061 @default.
- W3081002364 cites W3121329001 @default.
- W3081002364 cites W3145564876 @default.
- W3081002364 cites W3210839039 @default.
- W3081002364 cites W584634945 @default.
- W3081002364 cites W598314002 @default.