Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081004098> ?p ?o ?g. }
- W3081004098 abstract "Background: Independent Component Analysis (ICA) is a widespread tool for exploration and denoising of electroencephalography (EEG) or magnetoencephalography (MEG) signals. In its most common formulation, ICA assumes that the signal matrix is a noiseless linear mixture of independent sources that are assumed non-Gaussian. A limitation is that it enforces to estimate as many sources as sensors or to rely on a detrimental PCA step. Methods: We present the Spectral Matching ICA (SMICA) model. Signals are modelled as a linear mixing of independent sources corrupted by additive noise, where sources and the noise are stationary Gaussian time series. Thanks to the Gaussian assumption, the negative log-likelihood has a simple expression as a sum of divergences between the empirical spectral covariance matrices of the signals and those predicted by the model. The model parameters can then be estimated by the expectation-maximization (EM) algorithm. Results: Experiments on phantom MEG datasets show that SMICA can recover dipole locations more precisely than usual ICA algorithms or Maxwell filtering when the dipole amplitude is low. Experiments on EEG datasets show that SMICA identifies a source subspace which contains sources that have less pairwise mutual information, and are better explained by the projection of a single dipole on the scalp. Comparison with existing methods: Noiseless ICA models lead to degenerate likelihood when there are fewer sources than sensors, while SMICA succeeds without resorting to prior dimension reduction. Conclusions: SMICA is a promising alternative to other noiseless ICA models based on non-Gaussian assumptions." @default.
- W3081004098 created "2020-09-01" @default.
- W3081004098 creator A5018256474 @default.
- W3081004098 creator A5035643380 @default.
- W3081004098 creator A5042340163 @default.
- W3081004098 date "2021-05-01" @default.
- W3081004098 modified "2023-10-14" @default.
- W3081004098 title "Spectral independent component analysis with noise modeling for M/EEG source separation" @default.
- W3081004098 cites W1500564636 @default.
- W3081004098 cites W1576713280 @default.
- W3081004098 cites W1963544757 @default.
- W3081004098 cites W1978386551 @default.
- W3081004098 cites W1985155197 @default.
- W3081004098 cites W1986877334 @default.
- W3081004098 cites W1993985152 @default.
- W3081004098 cites W2003499122 @default.
- W3081004098 cites W2005791255 @default.
- W3081004098 cites W2009102908 @default.
- W3081004098 cites W2011301426 @default.
- W3081004098 cites W2029137712 @default.
- W3081004098 cites W2042568387 @default.
- W3081004098 cites W2049633694 @default.
- W3081004098 cites W2052032974 @default.
- W3081004098 cites W2062499495 @default.
- W3081004098 cites W2065642262 @default.
- W3081004098 cites W2071232376 @default.
- W3081004098 cites W2077745487 @default.
- W3081004098 cites W2079277602 @default.
- W3081004098 cites W2084333685 @default.
- W3081004098 cites W2098301339 @default.
- W3081004098 cites W2099741732 @default.
- W3081004098 cites W2105909330 @default.
- W3081004098 cites W2108384452 @default.
- W3081004098 cites W2109488753 @default.
- W3081004098 cites W2112345337 @default.
- W3081004098 cites W2120768649 @default.
- W3081004098 cites W2122418437 @default.
- W3081004098 cites W2124433161 @default.
- W3081004098 cites W2124757684 @default.
- W3081004098 cites W2128911505 @default.
- W3081004098 cites W2128967371 @default.
- W3081004098 cites W2135595031 @default.
- W3081004098 cites W2137526583 @default.
- W3081004098 cites W2141224535 @default.
- W3081004098 cites W2142638745 @default.
- W3081004098 cites W2142875089 @default.
- W3081004098 cites W2142975003 @default.
- W3081004098 cites W2145889472 @default.
- W3081004098 cites W2152502807 @default.
- W3081004098 cites W2153134014 @default.
- W3081004098 cites W2157765880 @default.
- W3081004098 cites W2160057224 @default.
- W3081004098 cites W2169918686 @default.
- W3081004098 cites W2171746332 @default.
- W3081004098 cites W2604384834 @default.
- W3081004098 cites W2762297287 @default.
- W3081004098 cites W2789438342 @default.
- W3081004098 cites W2949151678 @default.
- W3081004098 cites W2962832085 @default.
- W3081004098 cites W2963956257 @default.
- W3081004098 cites W3013862940 @default.
- W3081004098 hasPublicationYear "2021" @default.
- W3081004098 type Work @default.
- W3081004098 sameAs 3081004098 @default.
- W3081004098 citedByCount "1" @default.
- W3081004098 countsByYear W30810040982021 @default.
- W3081004098 crossrefType "journal-article" @default.
- W3081004098 hasAuthorship W3081004098A5018256474 @default.
- W3081004098 hasAuthorship W3081004098A5035643380 @default.
- W3081004098 hasAuthorship W3081004098A5042340163 @default.
- W3081004098 hasBestOaLocation W30810040981 @default.
- W3081004098 hasConcept C105795698 @default.
- W3081004098 hasConcept C11413529 @default.
- W3081004098 hasConcept C115961682 @default.
- W3081004098 hasConcept C120317606 @default.
- W3081004098 hasConcept C121332964 @default.
- W3081004098 hasConcept C127162648 @default.
- W3081004098 hasConcept C152139883 @default.
- W3081004098 hasConcept C153180895 @default.
- W3081004098 hasConcept C153402090 @default.
- W3081004098 hasConcept C154945302 @default.
- W3081004098 hasConcept C163716315 @default.
- W3081004098 hasConcept C178650346 @default.
- W3081004098 hasConcept C31258907 @default.
- W3081004098 hasConcept C33923547 @default.
- W3081004098 hasConcept C41008148 @default.
- W3081004098 hasConcept C4199805 @default.
- W3081004098 hasConcept C51432778 @default.
- W3081004098 hasConcept C61224824 @default.
- W3081004098 hasConcept C62520636 @default.
- W3081004098 hasConcept C70518039 @default.
- W3081004098 hasConcept C99498987 @default.
- W3081004098 hasConceptScore W3081004098C105795698 @default.
- W3081004098 hasConceptScore W3081004098C11413529 @default.
- W3081004098 hasConceptScore W3081004098C115961682 @default.
- W3081004098 hasConceptScore W3081004098C120317606 @default.
- W3081004098 hasConceptScore W3081004098C121332964 @default.
- W3081004098 hasConceptScore W3081004098C127162648 @default.
- W3081004098 hasConceptScore W3081004098C152139883 @default.
- W3081004098 hasConceptScore W3081004098C153180895 @default.