Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081032406> ?p ?o ?g. }
- W3081032406 endingPage "11" @default.
- W3081032406 startingPage "1" @default.
- W3081032406 abstract "In recent years, deep learning has been proved to be a promising bearing fault diagnosis technology. However, most of the existing methods are based on single-task learning. Fault diagnosis task (FDT) is treated as an independent task, and rich correlation information contained in different tasks is ignored. Therefore, this article explores the possibility of using speed identification task (SIT) and load identification task (LIT) as two auxiliary tasks to improve the performance of the FDT and proposes a multitask one-dimensional convolutional neural network (MT-1DCNN). Specifically, the MT-1DCNN utilizes trunk network to learn shared features required for every task and then processes different tasks through multiple task-specific branches. In this way, the MT-1DCNN can utilize features learned by related tasks to improve the performance of the FDT. The experimental results with wheelset bearing data set show that the multitask learning can make full use of the feature information captured by the SIT and the LIT to improve the fault diagnosis performance of the network, and the MT-1DCNN has a better performance than five excellent networks in accuracy." @default.
- W3081032406 created "2020-09-01" @default.
- W3081032406 creator A5003564537 @default.
- W3081032406 creator A5008028075 @default.
- W3081032406 creator A5049263535 @default.
- W3081032406 creator A5074574647 @default.
- W3081032406 creator A5088716214 @default.
- W3081032406 date "2021-01-01" @default.
- W3081032406 modified "2023-10-01" @default.
- W3081032406 title "Multitask Learning Based on Lightweight 1DCNN for Fault Diagnosis of Wheelset Bearings" @default.
- W3081032406 cites W1982878030 @default.
- W3081032406 cites W1985716425 @default.
- W3081032406 cites W2081910282 @default.
- W3081032406 cites W2102969258 @default.
- W3081032406 cites W2277064738 @default.
- W3081032406 cites W2337287714 @default.
- W3081032406 cites W2471080557 @default.
- W3081032406 cites W2485614840 @default.
- W3081032406 cites W2509453848 @default.
- W3081032406 cites W2514728168 @default.
- W3081032406 cites W2523408358 @default.
- W3081032406 cites W2583612411 @default.
- W3081032406 cites W2584994008 @default.
- W3081032406 cites W2592772746 @default.
- W3081032406 cites W2595657631 @default.
- W3081032406 cites W2605606145 @default.
- W3081032406 cites W2753709519 @default.
- W3081032406 cites W2765284480 @default.
- W3081032406 cites W2768753204 @default.
- W3081032406 cites W2779615422 @default.
- W3081032406 cites W2810057162 @default.
- W3081032406 cites W2885948040 @default.
- W3081032406 cites W2892075914 @default.
- W3081032406 cites W2895763863 @default.
- W3081032406 cites W2905949437 @default.
- W3081032406 cites W2906578288 @default.
- W3081032406 cites W2913340405 @default.
- W3081032406 cites W2915229515 @default.
- W3081032406 cites W2919115771 @default.
- W3081032406 cites W2922246408 @default.
- W3081032406 cites W2922660557 @default.
- W3081032406 cites W2933532955 @default.
- W3081032406 cites W2943909972 @default.
- W3081032406 cites W2973424371 @default.
- W3081032406 cites W2975932043 @default.
- W3081032406 cites W2989818023 @default.
- W3081032406 cites W2991661665 @default.
- W3081032406 cites W3000384844 @default.
- W3081032406 cites W3030997042 @default.
- W3081032406 doi "https://doi.org/10.1109/tim.2020.3017900" @default.
- W3081032406 hasPublicationYear "2021" @default.
- W3081032406 type Work @default.
- W3081032406 sameAs 3081032406 @default.
- W3081032406 citedByCount "30" @default.
- W3081032406 countsByYear W30810324062020 @default.
- W3081032406 countsByYear W30810324062021 @default.
- W3081032406 countsByYear W30810324062022 @default.
- W3081032406 countsByYear W30810324062023 @default.
- W3081032406 crossrefType "journal-article" @default.
- W3081032406 hasAuthorship W3081032406A5003564537 @default.
- W3081032406 hasAuthorship W3081032406A5008028075 @default.
- W3081032406 hasAuthorship W3081032406A5049263535 @default.
- W3081032406 hasAuthorship W3081032406A5074574647 @default.
- W3081032406 hasAuthorship W3081032406A5088716214 @default.
- W3081032406 hasConcept C116834253 @default.
- W3081032406 hasConcept C119857082 @default.
- W3081032406 hasConcept C127313418 @default.
- W3081032406 hasConcept C127413603 @default.
- W3081032406 hasConcept C138885662 @default.
- W3081032406 hasConcept C154945302 @default.
- W3081032406 hasConcept C165205528 @default.
- W3081032406 hasConcept C175551986 @default.
- W3081032406 hasConcept C177264268 @default.
- W3081032406 hasConcept C199360897 @default.
- W3081032406 hasConcept C201995342 @default.
- W3081032406 hasConcept C2776401178 @default.
- W3081032406 hasConcept C2780451532 @default.
- W3081032406 hasConcept C28006648 @default.
- W3081032406 hasConcept C41008148 @default.
- W3081032406 hasConcept C41895202 @default.
- W3081032406 hasConcept C50644808 @default.
- W3081032406 hasConcept C52622490 @default.
- W3081032406 hasConcept C59822182 @default.
- W3081032406 hasConcept C81363708 @default.
- W3081032406 hasConcept C86803240 @default.
- W3081032406 hasConceptScore W3081032406C116834253 @default.
- W3081032406 hasConceptScore W3081032406C119857082 @default.
- W3081032406 hasConceptScore W3081032406C127313418 @default.
- W3081032406 hasConceptScore W3081032406C127413603 @default.
- W3081032406 hasConceptScore W3081032406C138885662 @default.
- W3081032406 hasConceptScore W3081032406C154945302 @default.
- W3081032406 hasConceptScore W3081032406C165205528 @default.
- W3081032406 hasConceptScore W3081032406C175551986 @default.
- W3081032406 hasConceptScore W3081032406C177264268 @default.
- W3081032406 hasConceptScore W3081032406C199360897 @default.
- W3081032406 hasConceptScore W3081032406C201995342 @default.
- W3081032406 hasConceptScore W3081032406C2776401178 @default.
- W3081032406 hasConceptScore W3081032406C2780451532 @default.