Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081065019> ?p ?o ?g. }
- W3081065019 endingPage "1141" @default.
- W3081065019 startingPage "1141" @default.
- W3081065019 abstract "The state of materials and accordingly the properties of structures are changing over the period of use, which may influence the reliability and quality of the structure during its life-time. Therefore identification of the model parameters of the system is a topic which has attracted attention in the content of structural health monitoring. The parameters of a constitutive model are usually identified by minimization of the difference between model response and experimental data. However, the measurement errors and differences in the specimens lead to deviations in the determined parameters. In this article, the Choboche model with a damage is used and a stochastic simulation technique is applied to generate artificial data which exhibit the same stochastic behavior as experimental data. Then the model and damage parameters are identified by applying the sequential Gauss-Markov-Kalman filter (SGMKF) approach as this method is determined as the most efficient method for time consuming finite element model updating problems among filtering and random walk approaches. The parameters identified using this Bayesian approach are compared with the true parameters in the simulation, and further, the efficiency of the identification method is discussed. The aim of this study is to observe whether the mentioned method is suitable and efficient to identify the model and damage parameters of a material model, as a highly non-linear model, for a real structural specimen using a limited surface displacement measurement vector gained by Digital Image Correlation (DIC) and to see how much information is indeed needed to estimate the parameters accurately even by considering the model error and whether this approach can also practically be used for health monitoring purposes before the occurrence of severe damage and collapse." @default.
- W3081065019 created "2020-09-01" @default.
- W3081065019 creator A5002304596 @default.
- W3081065019 creator A5032795581 @default.
- W3081065019 creator A5037684251 @default.
- W3081065019 creator A5062849809 @default.
- W3081065019 creator A5066474131 @default.
- W3081065019 date "2020-08-24" @default.
- W3081065019 modified "2023-10-01" @default.
- W3081065019 title "Bayesian Parameter Determination of a CT-Test Described by a Viscoplastic-Damage Model Considering the Model Error" @default.
- W3081065019 cites W1538744051 @default.
- W3081065019 cites W1753465721 @default.
- W3081065019 cites W1964052244 @default.
- W3081065019 cites W1964083123 @default.
- W3081065019 cites W1964630469 @default.
- W3081065019 cites W1966465688 @default.
- W3081065019 cites W1969362074 @default.
- W3081065019 cites W1969645381 @default.
- W3081065019 cites W1972934317 @default.
- W3081065019 cites W1982670637 @default.
- W3081065019 cites W1982703896 @default.
- W3081065019 cites W1990448754 @default.
- W3081065019 cites W1997909686 @default.
- W3081065019 cites W2004219573 @default.
- W3081065019 cites W2006965307 @default.
- W3081065019 cites W2014018514 @default.
- W3081065019 cites W2022917773 @default.
- W3081065019 cites W2024716095 @default.
- W3081065019 cites W2027255422 @default.
- W3081065019 cites W2028311936 @default.
- W3081065019 cites W2040322363 @default.
- W3081065019 cites W2041686979 @default.
- W3081065019 cites W2044721184 @default.
- W3081065019 cites W2045363046 @default.
- W3081065019 cites W2045942656 @default.
- W3081065019 cites W2052725394 @default.
- W3081065019 cites W2054247041 @default.
- W3081065019 cites W2057512523 @default.
- W3081065019 cites W2059116590 @default.
- W3081065019 cites W2059724858 @default.
- W3081065019 cites W2061640625 @default.
- W3081065019 cites W2067179498 @default.
- W3081065019 cites W2073210146 @default.
- W3081065019 cites W2074252398 @default.
- W3081065019 cites W2085014932 @default.
- W3081065019 cites W2085932028 @default.
- W3081065019 cites W2092886290 @default.
- W3081065019 cites W2125123544 @default.
- W3081065019 cites W2126418604 @default.
- W3081065019 cites W2136029353 @default.
- W3081065019 cites W2142378872 @default.
- W3081065019 cites W2143196324 @default.
- W3081065019 cites W2149131394 @default.
- W3081065019 cites W2150212054 @default.
- W3081065019 cites W2151313198 @default.
- W3081065019 cites W2172024201 @default.
- W3081065019 cites W2251890423 @default.
- W3081065019 cites W2266749047 @default.
- W3081065019 cites W2298626493 @default.
- W3081065019 cites W2321957512 @default.
- W3081065019 cites W2418135777 @default.
- W3081065019 cites W2572000751 @default.
- W3081065019 cites W2608227894 @default.
- W3081065019 cites W2780735101 @default.
- W3081065019 cites W2951231773 @default.
- W3081065019 cites W2955498043 @default.
- W3081065019 cites W2957464030 @default.
- W3081065019 cites W2962859183 @default.
- W3081065019 cites W2963817488 @default.
- W3081065019 cites W2966995531 @default.
- W3081065019 cites W2981659597 @default.
- W3081065019 cites W2990139750 @default.
- W3081065019 cites W2990512113 @default.
- W3081065019 cites W2998427093 @default.
- W3081065019 cites W3005463129 @default.
- W3081065019 cites W3007094498 @default.
- W3081065019 cites W3009028291 @default.
- W3081065019 cites W3022714005 @default.
- W3081065019 cites W3033857794 @default.
- W3081065019 cites W3081484192 @default.
- W3081065019 cites W923920794 @default.
- W3081065019 doi "https://doi.org/10.3390/met10091141" @default.
- W3081065019 hasPublicationYear "2020" @default.
- W3081065019 type Work @default.
- W3081065019 sameAs 3081065019 @default.
- W3081065019 citedByCount "13" @default.
- W3081065019 countsByYear W30810650192020 @default.
- W3081065019 countsByYear W30810650192021 @default.
- W3081065019 countsByYear W30810650192022 @default.
- W3081065019 countsByYear W30810650192023 @default.
- W3081065019 crossrefType "journal-article" @default.
- W3081065019 hasAuthorship W3081065019A5002304596 @default.
- W3081065019 hasAuthorship W3081065019A5032795581 @default.
- W3081065019 hasAuthorship W3081065019A5037684251 @default.
- W3081065019 hasAuthorship W3081065019A5062849809 @default.
- W3081065019 hasAuthorship W3081065019A5066474131 @default.
- W3081065019 hasBestOaLocation W30810650191 @default.
- W3081065019 hasConcept C107673813 @default.