Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081081614> ?p ?o ?g. }
- W3081081614 endingPage "2276" @default.
- W3081081614 startingPage "2255" @default.
- W3081081614 abstract "The emergence of whole slide imaging technology allows for pathology diagnosis on a computer screen. The applications of digital pathology are expanding, from supporting remote institutes suffering from a shortage of pathologists to routine use in daily diagnosis including that of lung cancer. Through practice and research large archival databases of digital pathology images have been developed that will facilitate the development of artificial intelligence (AI) methods for image analysis. Currently, several AI applications have been reported in the field of lung cancer; these include the segmentation of carcinoma foci, detection of lymph node metastasis, counting of tumor cells, and prediction of gene mutations. Although the integration of AI algorithms into clinical practice remains a significant challenge, we have implemented tumor cell count for genetic analysis, a helpful application for routine use. Our experience suggests that pathologists often overestimate the contents of tumor cells, and the use of AI-based analysis increases the accuracy and makes the tasks less tedious. However, there are several difficulties encountered in the practical use of AI in clinical diagnosis. These include the lack of sufficient annotated data for the development and validation of AI systems, the explainability of black box AI models, such as those based on deep learning that offer the most promising performance, and the difficulty in defining the ground truth data for training and validation owing to inherent ambiguity in most applications. All of these together present significant challenges in the development and clinical translation of AI methods in the practice of pathology. Additional research on these problems will help in resolving the barriers to the clinical use of AI. Helping pathologists in developing knowledge of the working and limitations of AI will benefit the use of AI in both diagnostics and research." @default.
- W3081081614 created "2020-09-01" @default.
- W3081081614 creator A5003833640 @default.
- W3081081614 creator A5020931739 @default.
- W3081081614 creator A5027102173 @default.
- W3081081614 creator A5034820084 @default.
- W3081081614 creator A5041976076 @default.
- W3081081614 creator A5043036096 @default.
- W3081081614 creator A5050325779 @default.
- W3081081614 creator A5054801254 @default.
- W3081081614 creator A5056821323 @default.
- W3081081614 creator A5072827213 @default.
- W3081081614 creator A5085393855 @default.
- W3081081614 date "2020-10-01" @default.
- W3081081614 modified "2023-10-15" @default.
- W3081081614 title "A narrative review of digital pathology and artificial intelligence: focusing on lung cancer" @default.
- W3081081614 cites W148080736 @default.
- W3081081614 cites W1983587393 @default.
- W3081081614 cites W1992398433 @default.
- W3081081614 cites W2020764301 @default.
- W3081081614 cites W2032116530 @default.
- W3081081614 cites W2034346990 @default.
- W3081081614 cites W2048553228 @default.
- W3081081614 cites W2097844752 @default.
- W3081081614 cites W2126470947 @default.
- W3081081614 cites W2150134401 @default.
- W3081081614 cites W2162141568 @default.
- W3081081614 cites W2166581609 @default.
- W3081081614 cites W2514628397 @default.
- W3081081614 cites W2564463480 @default.
- W3081081614 cites W2759004613 @default.
- W3081081614 cites W2760946358 @default.
- W3081081614 cites W2761290139 @default.
- W3081081614 cites W2761668583 @default.
- W3081081614 cites W2764221523 @default.
- W3081081614 cites W2772723798 @default.
- W3081081614 cites W2784192669 @default.
- W3081081614 cites W2792758816 @default.
- W3081081614 cites W2794447976 @default.
- W3081081614 cites W2794803511 @default.
- W3081081614 cites W2795387833 @default.
- W3081081614 cites W2805126027 @default.
- W3081081614 cites W2806683285 @default.
- W3081081614 cites W2807897842 @default.
- W3081081614 cites W2888290033 @default.
- W3081081614 cites W2889232360 @default.
- W3081081614 cites W2908580138 @default.
- W3081081614 cites W2916804035 @default.
- W3081081614 cites W2920281039 @default.
- W3081081614 cites W2921133145 @default.
- W3081081614 cites W2922268597 @default.
- W3081081614 cites W2938085684 @default.
- W3081081614 cites W2945429077 @default.
- W3081081614 cites W2947923969 @default.
- W3081081614 cites W2948930564 @default.
- W3081081614 cites W2952747247 @default.
- W3081081614 cites W2956228567 @default.
- W3081081614 cites W2957942530 @default.
- W3081081614 cites W2962804068 @default.
- W3081081614 cites W2963652908 @default.
- W3081081614 cites W2964345665 @default.
- W3081081614 cites W2966778246 @default.
- W3081081614 cites W2967444033 @default.
- W3081081614 cites W2969542839 @default.
- W3081081614 cites W2971376088 @default.
- W3081081614 cites W2974860472 @default.
- W3081081614 cites W2980106179 @default.
- W3081081614 cites W2981735892 @default.
- W3081081614 cites W2989743390 @default.
- W3081081614 cites W2991151034 @default.
- W3081081614 cites W2991232889 @default.
- W3081081614 cites W2995833348 @default.
- W3081081614 cites W3014524458 @default.
- W3081081614 cites W3023087441 @default.
- W3081081614 cites W3098027819 @default.
- W3081081614 cites W3101564865 @default.
- W3081081614 doi "https://doi.org/10.21037/tlcr-20-591" @default.
- W3081081614 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7653145" @default.
- W3081081614 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33209648" @default.
- W3081081614 hasPublicationYear "2020" @default.
- W3081081614 type Work @default.
- W3081081614 sameAs 3081081614 @default.
- W3081081614 citedByCount "51" @default.
- W3081081614 countsByYear W30810816142021 @default.
- W3081081614 countsByYear W30810816142022 @default.
- W3081081614 countsByYear W30810816142023 @default.
- W3081081614 crossrefType "journal-article" @default.
- W3081081614 hasAuthorship W3081081614A5003833640 @default.
- W3081081614 hasAuthorship W3081081614A5020931739 @default.
- W3081081614 hasAuthorship W3081081614A5027102173 @default.
- W3081081614 hasAuthorship W3081081614A5034820084 @default.
- W3081081614 hasAuthorship W3081081614A5041976076 @default.
- W3081081614 hasAuthorship W3081081614A5043036096 @default.
- W3081081614 hasAuthorship W3081081614A5050325779 @default.
- W3081081614 hasAuthorship W3081081614A5054801254 @default.
- W3081081614 hasAuthorship W3081081614A5056821323 @default.
- W3081081614 hasAuthorship W3081081614A5072827213 @default.
- W3081081614 hasAuthorship W3081081614A5085393855 @default.