Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081178304> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3081178304 endingPage "1212" @default.
- W3081178304 startingPage "1197" @default.
- W3081178304 abstract "In healthcare sector, cancer is one of the most threatening and fast-growing diseases. The early diagnosis of this disease is very important as the success rate of its treatment depends upon how early and accurately it is diagnosed. The machine learning algorithms are helpful in detection and prediction of diseases. To improve efficiency of these algorithms, optimal features need to be selected. So, this research work uses genetic algorithm to select optimal features before applying k-nearest neighbor (KNN) and weighted k-nearest neighbor (WKNN) on Wisconsin Breast Cancer Prognosis dataset extracted from UCI repository. This approach helps in early prediction and the results show that WKNN performed better with 86.44% accuracy than KNN which gives 83.05% accuracy." @default.
- W3081178304 created "2020-09-01" @default.
- W3081178304 creator A5040179884 @default.
- W3081178304 creator A5078488638 @default.
- W3081178304 creator A5085178268 @default.
- W3081178304 creator A5086263561 @default.
- W3081178304 date "2020-08-14" @default.
- W3081178304 modified "2023-09-25" @default.
- W3081178304 title "Feature Selection Using Genetic Algorithm for Cancer Prediction System" @default.
- W3081178304 cites W2370924594 @default.
- W3081178304 cites W2607867882 @default.
- W3081178304 cites W2610962727 @default.
- W3081178304 cites W2734856481 @default.
- W3081178304 cites W2771930517 @default.
- W3081178304 cites W2786550568 @default.
- W3081178304 cites W2787376973 @default.
- W3081178304 cites W2791030877 @default.
- W3081178304 cites W2793321932 @default.
- W3081178304 cites W2795475639 @default.
- W3081178304 cites W2795995848 @default.
- W3081178304 cites W2800984152 @default.
- W3081178304 cites W2806359329 @default.
- W3081178304 cites W2806419994 @default.
- W3081178304 cites W2808866466 @default.
- W3081178304 cites W2907803369 @default.
- W3081178304 cites W2946942199 @default.
- W3081178304 doi "https://doi.org/10.1007/978-981-15-5341-7_91" @default.
- W3081178304 hasPublicationYear "2020" @default.
- W3081178304 type Work @default.
- W3081178304 sameAs 3081178304 @default.
- W3081178304 citedByCount "1" @default.
- W3081178304 countsByYear W30811783042023 @default.
- W3081178304 crossrefType "book-chapter" @default.
- W3081178304 hasAuthorship W3081178304A5040179884 @default.
- W3081178304 hasAuthorship W3081178304A5078488638 @default.
- W3081178304 hasAuthorship W3081178304A5085178268 @default.
- W3081178304 hasAuthorship W3081178304A5086263561 @default.
- W3081178304 hasConcept C113238511 @default.
- W3081178304 hasConcept C11413529 @default.
- W3081178304 hasConcept C119857082 @default.
- W3081178304 hasConcept C121608353 @default.
- W3081178304 hasConcept C124101348 @default.
- W3081178304 hasConcept C126322002 @default.
- W3081178304 hasConcept C138885662 @default.
- W3081178304 hasConcept C148483581 @default.
- W3081178304 hasConcept C153180895 @default.
- W3081178304 hasConcept C154945302 @default.
- W3081178304 hasConcept C2776401178 @default.
- W3081178304 hasConcept C41008148 @default.
- W3081178304 hasConcept C41895202 @default.
- W3081178304 hasConcept C530470458 @default.
- W3081178304 hasConcept C71924100 @default.
- W3081178304 hasConcept C81917197 @default.
- W3081178304 hasConcept C8880873 @default.
- W3081178304 hasConceptScore W3081178304C113238511 @default.
- W3081178304 hasConceptScore W3081178304C11413529 @default.
- W3081178304 hasConceptScore W3081178304C119857082 @default.
- W3081178304 hasConceptScore W3081178304C121608353 @default.
- W3081178304 hasConceptScore W3081178304C124101348 @default.
- W3081178304 hasConceptScore W3081178304C126322002 @default.
- W3081178304 hasConceptScore W3081178304C138885662 @default.
- W3081178304 hasConceptScore W3081178304C148483581 @default.
- W3081178304 hasConceptScore W3081178304C153180895 @default.
- W3081178304 hasConceptScore W3081178304C154945302 @default.
- W3081178304 hasConceptScore W3081178304C2776401178 @default.
- W3081178304 hasConceptScore W3081178304C41008148 @default.
- W3081178304 hasConceptScore W3081178304C41895202 @default.
- W3081178304 hasConceptScore W3081178304C530470458 @default.
- W3081178304 hasConceptScore W3081178304C71924100 @default.
- W3081178304 hasConceptScore W3081178304C81917197 @default.
- W3081178304 hasConceptScore W3081178304C8880873 @default.
- W3081178304 hasLocation W30811783041 @default.
- W3081178304 hasOpenAccess W3081178304 @default.
- W3081178304 hasPrimaryLocation W30811783041 @default.
- W3081178304 hasRelatedWork W2146076056 @default.
- W3081178304 hasRelatedWork W2316780152 @default.
- W3081178304 hasRelatedWork W2374344280 @default.
- W3081178304 hasRelatedWork W2385233088 @default.
- W3081178304 hasRelatedWork W2546942002 @default.
- W3081178304 hasRelatedWork W2970216048 @default.
- W3081178304 hasRelatedWork W3163334550 @default.
- W3081178304 hasRelatedWork W3200179079 @default.
- W3081178304 hasRelatedWork W4293525103 @default.
- W3081178304 hasRelatedWork W2345184372 @default.
- W3081178304 isParatext "false" @default.
- W3081178304 isRetracted "false" @default.
- W3081178304 magId "3081178304" @default.
- W3081178304 workType "book-chapter" @default.