Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081185532> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W3081185532 abstract "The increase in GPS-enabled devices and proliferation of location-based applications have resulted in an abundance of geotagged (spatial) data. As a consequence, numerous applications have emerged that utilize the spatial data to provide different types of location-based services. However, the huge amount of available spatial data presents a challenge to the efficiency of these location-based services. Although the advent of big data frameworks like Apache Spark has enabled the processing of large amounts of data efficiently, they are designed for general (non-spatial) data. That is due to the build-in data partitioning mechanism that does not take into account the spatial proximity of the data. Therefore, these big data frameworks cannot be readily used for spatial analytics such as efficiently answering spatial queries. To fill this gap, this paper proposes SparkNN, an in-memory partitioning and indexing system for answering spatial queries, such as K-nearest neighbor, on big spatial data. SparkNN is implemented on top of Apache Spark and consists of three layers to facilitate efficient spatial queries. The first layer is a spatial-aware partitioning layer, which partitions the spatial data into several partitions ensuring that the load of the partitions is balanced and data objects with close proximity are placed in the same, or neighboring, partitions. The second layer is a local indexing layer, which provides a spatial index inside each partition to speed up the data search within the partition. The third layer is a global index, which is placed in the master node of Spark to route spatial queries to the relevant partitions. The efficiency of SparkNN was evaluated by extensive experiments with big spatial datasets. The results show SparkNN significantly outperforms the state-of-the-art Spark system when evaluated on the same set of queries." @default.
- W3081185532 created "2020-09-01" @default.
- W3081185532 creator A5041772891 @default.
- W3081185532 creator A5049545076 @default.
- W3081185532 creator A5069814126 @default.
- W3081185532 date "2020-01-01" @default.
- W3081185532 modified "2023-09-27" @default.
- W3081185532 title "SparkNN: A Distributed In-Memory Data Partitioning for KNN Queries on Big Spatial Data" @default.
- W3081185532 cites W1539684520 @default.
- W3081185532 cites W1966182638 @default.
- W3081185532 cites W2072042523 @default.
- W3081185532 cites W2110086534 @default.
- W3081185532 cites W2115583184 @default.
- W3081185532 cites W2173213060 @default.
- W3081185532 cites W2534495228 @default.
- W3081185532 cites W2542459869 @default.
- W3081185532 cites W2548613432 @default.
- W3081185532 cites W2804359319 @default.
- W3081185532 cites W2889830384 @default.
- W3081185532 cites W2899093519 @default.
- W3081185532 cites W2917670471 @default.
- W3081185532 doi "https://doi.org/10.5334/dsj-2020-035" @default.
- W3081185532 hasPublicationYear "2020" @default.
- W3081185532 type Work @default.
- W3081185532 sameAs 3081185532 @default.
- W3081185532 citedByCount "3" @default.
- W3081185532 countsByYear W30811855322021 @default.
- W3081185532 countsByYear W30811855322022 @default.
- W3081185532 crossrefType "journal-article" @default.
- W3081185532 hasAuthorship W3081185532A5041772891 @default.
- W3081185532 hasAuthorship W3081185532A5049545076 @default.
- W3081185532 hasAuthorship W3081185532A5069814126 @default.
- W3081185532 hasBestOaLocation W30811855321 @default.
- W3081185532 hasConcept C105795698 @default.
- W3081185532 hasConcept C124101348 @default.
- W3081185532 hasConcept C159620131 @default.
- W3081185532 hasConcept C23123220 @default.
- W3081185532 hasConcept C2522767166 @default.
- W3081185532 hasConcept C33923547 @default.
- W3081185532 hasConcept C41008148 @default.
- W3081185532 hasConcept C75684735 @default.
- W3081185532 hasConcept C77088390 @default.
- W3081185532 hasConceptScore W3081185532C105795698 @default.
- W3081185532 hasConceptScore W3081185532C124101348 @default.
- W3081185532 hasConceptScore W3081185532C159620131 @default.
- W3081185532 hasConceptScore W3081185532C23123220 @default.
- W3081185532 hasConceptScore W3081185532C2522767166 @default.
- W3081185532 hasConceptScore W3081185532C33923547 @default.
- W3081185532 hasConceptScore W3081185532C41008148 @default.
- W3081185532 hasConceptScore W3081185532C75684735 @default.
- W3081185532 hasConceptScore W3081185532C77088390 @default.
- W3081185532 hasLocation W30811855321 @default.
- W3081185532 hasLocation W30811855322 @default.
- W3081185532 hasOpenAccess W3081185532 @default.
- W3081185532 hasPrimaryLocation W30811855321 @default.
- W3081185532 hasRelatedWork W1542218243 @default.
- W3081185532 hasRelatedWork W1996408511 @default.
- W3081185532 hasRelatedWork W2372677918 @default.
- W3081185532 hasRelatedWork W2577361510 @default.
- W3081185532 hasRelatedWork W2608950002 @default.
- W3081185532 hasRelatedWork W2810605039 @default.
- W3081185532 hasRelatedWork W2906467684 @default.
- W3081185532 hasRelatedWork W3157720081 @default.
- W3081185532 hasRelatedWork W4256454126 @default.
- W3081185532 hasRelatedWork W2558600762 @default.
- W3081185532 hasVolume "19" @default.
- W3081185532 isParatext "false" @default.
- W3081185532 isRetracted "false" @default.
- W3081185532 magId "3081185532" @default.
- W3081185532 workType "article" @default.