Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081208643> ?p ?o ?g. }
- W3081208643 endingPage "495" @default.
- W3081208643 startingPage "486" @default.
- W3081208643 abstract "This research focused on the effect of particle size and flotation time on magnesite flotation, and the flotation performance of various size fractions were predicted by a machine learning (ML) method. Four kinetic models were used to fit the recovery of MgO and SiO2 in various size fractions of magnesite flotation. The results demonstrated that the flotation of magnesite exhibits good agreement with the classical first-order kinetic model. Besides, the effect of various particle sizes on MgO recovery and selectivity index was predicted by ML method. It was shown that the proposed ML model could accurately reproduce the effects of particle size and flotation time on magnesite flotation performance. Furthermore, the developed model revealed that the optimal mean size range for magnesite flotation is 30 to 48 μm. Therefore, this paper is of great significance to the application of ML methods in the prediction of various magnesite size flotation performance." @default.
- W3081208643 created "2020-09-01" @default.
- W3081208643 creator A5004523143 @default.
- W3081208643 creator A5011795686 @default.
- W3081208643 creator A5029813832 @default.
- W3081208643 creator A5038447744 @default.
- W3081208643 creator A5054351669 @default.
- W3081208643 creator A5068977400 @default.
- W3081208643 creator A5090047947 @default.
- W3081208643 date "2020-10-01" @default.
- W3081208643 modified "2023-10-14" @default.
- W3081208643 title "Effect of particle size on magnesite flotation based on kinetic studies and machine learning simulation" @default.
- W3081208643 cites W1797580880 @default.
- W3081208643 cites W2007999608 @default.
- W3081208643 cites W2008158230 @default.
- W3081208643 cites W2013526834 @default.
- W3081208643 cites W2057073695 @default.
- W3081208643 cites W2092155486 @default.
- W3081208643 cites W2096352448 @default.
- W3081208643 cites W2127946374 @default.
- W3081208643 cites W2137356002 @default.
- W3081208643 cites W2206030634 @default.
- W3081208643 cites W2503871534 @default.
- W3081208643 cites W2508809169 @default.
- W3081208643 cites W2509426396 @default.
- W3081208643 cites W2529287175 @default.
- W3081208643 cites W2608837339 @default.
- W3081208643 cites W2763397187 @default.
- W3081208643 cites W2768780086 @default.
- W3081208643 cites W2772413524 @default.
- W3081208643 cites W2791023273 @default.
- W3081208643 cites W2792973845 @default.
- W3081208643 cites W2794113000 @default.
- W3081208643 cites W2892252988 @default.
- W3081208643 cites W2895588974 @default.
- W3081208643 cites W2896755167 @default.
- W3081208643 cites W2903880955 @default.
- W3081208643 cites W2905170298 @default.
- W3081208643 cites W2911964244 @default.
- W3081208643 cites W2950065904 @default.
- W3081208643 cites W2967512815 @default.
- W3081208643 cites W2972066617 @default.
- W3081208643 cites W2974698248 @default.
- W3081208643 cites W2975335018 @default.
- W3081208643 cites W2978002224 @default.
- W3081208643 cites W2979402468 @default.
- W3081208643 cites W2980644326 @default.
- W3081208643 cites W2987033646 @default.
- W3081208643 cites W2997033762 @default.
- W3081208643 cites W2999372297 @default.
- W3081208643 cites W3003561321 @default.
- W3081208643 cites W3005198489 @default.
- W3081208643 cites W3006913750 @default.
- W3081208643 cites W3008787888 @default.
- W3081208643 cites W3010854085 @default.
- W3081208643 cites W3011273494 @default.
- W3081208643 cites W3016183705 @default.
- W3081208643 cites W3016341540 @default.
- W3081208643 cites W3018246118 @default.
- W3081208643 cites W3027399477 @default.
- W3081208643 cites W3031383486 @default.
- W3081208643 cites W3034015087 @default.
- W3081208643 doi "https://doi.org/10.1016/j.powtec.2020.08.054" @default.
- W3081208643 hasPublicationYear "2020" @default.
- W3081208643 type Work @default.
- W3081208643 sameAs 3081208643 @default.
- W3081208643 citedByCount "14" @default.
- W3081208643 countsByYear W30812086432021 @default.
- W3081208643 countsByYear W30812086432022 @default.
- W3081208643 countsByYear W30812086432023 @default.
- W3081208643 crossrefType "journal-article" @default.
- W3081208643 hasAuthorship W3081208643A5004523143 @default.
- W3081208643 hasAuthorship W3081208643A5011795686 @default.
- W3081208643 hasAuthorship W3081208643A5029813832 @default.
- W3081208643 hasAuthorship W3081208643A5038447744 @default.
- W3081208643 hasAuthorship W3081208643A5054351669 @default.
- W3081208643 hasAuthorship W3081208643A5068977400 @default.
- W3081208643 hasAuthorship W3081208643A5090047947 @default.
- W3081208643 hasConcept C111368507 @default.
- W3081208643 hasConcept C121332964 @default.
- W3081208643 hasConcept C127313418 @default.
- W3081208643 hasConcept C127413603 @default.
- W3081208643 hasConcept C135889238 @default.
- W3081208643 hasConcept C185592680 @default.
- W3081208643 hasConcept C187530423 @default.
- W3081208643 hasConcept C191897082 @default.
- W3081208643 hasConcept C192562407 @default.
- W3081208643 hasConcept C199289684 @default.
- W3081208643 hasConcept C21880701 @default.
- W3081208643 hasConcept C2778517922 @default.
- W3081208643 hasConcept C2779117930 @default.
- W3081208643 hasConcept C42360764 @default.
- W3081208643 hasConcept C43617362 @default.
- W3081208643 hasConcept C543218039 @default.
- W3081208643 hasConcept C62520636 @default.
- W3081208643 hasConceptScore W3081208643C111368507 @default.
- W3081208643 hasConceptScore W3081208643C121332964 @default.
- W3081208643 hasConceptScore W3081208643C127313418 @default.