Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081229384> ?p ?o ?g. }
- W3081229384 abstract "Assessment of risks of pandemics to communities and workplaces requires an intelligent decision support system (DSS). The core of such DSS must be based on machine reasoning techniques such as inference and shall be capable of estimating risks and biases in decision making. In this paper, we use a causal network to make Bayesian inference on COVID-19 data, in particular, assess risks such as infection rate and other precaution indicators. Unlike other statistical models, a Bayesian causal network combines various sources of data through joint distribution, and better reflects the uncertainty of the available data. We provide an example using the case of the COVID-19 outbreak that happened on board of USS Theodore Roosevelt in early 2020." @default.
- W3081229384 created "2020-09-01" @default.
- W3081229384 creator A5070572598 @default.
- W3081229384 creator A5085946799 @default.
- W3081229384 date "2020-08-24" @default.
- W3081229384 modified "2023-09-25" @default.
- W3081229384 title "Machine Reasoning to Assess Pandemics Risks: Case of USS Theodore Roosevelt" @default.
- W3081229384 cites W1015225754 @default.
- W3081229384 cites W150828540 @default.
- W3081229384 cites W1938670616 @default.
- W3081229384 cites W1982827816 @default.
- W3081229384 cites W2041652193 @default.
- W3081229384 cites W2046417906 @default.
- W3081229384 cites W2049886280 @default.
- W3081229384 cites W2073794724 @default.
- W3081229384 cites W2081665835 @default.
- W3081229384 cites W2089201173 @default.
- W3081229384 cites W2123834969 @default.
- W3081229384 cites W2135363691 @default.
- W3081229384 cites W2137533737 @default.
- W3081229384 cites W2159080219 @default.
- W3081229384 cites W2297288734 @default.
- W3081229384 cites W2306172304 @default.
- W3081229384 cites W2319479146 @default.
- W3081229384 cites W2394581698 @default.
- W3081229384 cites W2469532945 @default.
- W3081229384 cites W2499995823 @default.
- W3081229384 cites W2613668921 @default.
- W3081229384 cites W2620621036 @default.
- W3081229384 cites W2742108348 @default.
- W3081229384 cites W2744601059 @default.
- W3081229384 cites W2777686840 @default.
- W3081229384 cites W2790772406 @default.
- W3081229384 cites W2802596711 @default.
- W3081229384 cites W2898599549 @default.
- W3081229384 cites W2913772900 @default.
- W3081229384 cites W2917286209 @default.
- W3081229384 cites W2918975802 @default.
- W3081229384 cites W2936825391 @default.
- W3081229384 cites W2946783737 @default.
- W3081229384 cites W2991211569 @default.
- W3081229384 cites W2994926144 @default.
- W3081229384 cites W3037971387 @default.
- W3081229384 cites W3113686433 @default.
- W3081229384 doi "https://doi.org/10.48550/arxiv.2008.11040" @default.
- W3081229384 hasPublicationYear "2020" @default.
- W3081229384 type Work @default.
- W3081229384 sameAs 3081229384 @default.
- W3081229384 citedByCount "0" @default.
- W3081229384 crossrefType "posted-content" @default.
- W3081229384 hasAuthorship W3081229384A5070572598 @default.
- W3081229384 hasAuthorship W3081229384A5085946799 @default.
- W3081229384 hasBestOaLocation W30812293841 @default.
- W3081229384 hasConcept C105795698 @default.
- W3081229384 hasConcept C107673813 @default.
- W3081229384 hasConcept C112930515 @default.
- W3081229384 hasConcept C119857082 @default.
- W3081229384 hasConcept C127413603 @default.
- W3081229384 hasConcept C134261354 @default.
- W3081229384 hasConcept C142724271 @default.
- W3081229384 hasConcept C144133560 @default.
- W3081229384 hasConcept C149782125 @default.
- W3081229384 hasConcept C154945302 @default.
- W3081229384 hasConcept C158600405 @default.
- W3081229384 hasConcept C160234255 @default.
- W3081229384 hasConcept C162324750 @default.
- W3081229384 hasConcept C2522767166 @default.
- W3081229384 hasConcept C2776214188 @default.
- W3081229384 hasConcept C2779134260 @default.
- W3081229384 hasConcept C3008058167 @default.
- W3081229384 hasConcept C33724603 @default.
- W3081229384 hasConcept C33923547 @default.
- W3081229384 hasConcept C41008148 @default.
- W3081229384 hasConcept C42475967 @default.
- W3081229384 hasConcept C524204448 @default.
- W3081229384 hasConcept C71924100 @default.
- W3081229384 hasConcept C89623803 @default.
- W3081229384 hasConceptScore W3081229384C105795698 @default.
- W3081229384 hasConceptScore W3081229384C107673813 @default.
- W3081229384 hasConceptScore W3081229384C112930515 @default.
- W3081229384 hasConceptScore W3081229384C119857082 @default.
- W3081229384 hasConceptScore W3081229384C127413603 @default.
- W3081229384 hasConceptScore W3081229384C134261354 @default.
- W3081229384 hasConceptScore W3081229384C142724271 @default.
- W3081229384 hasConceptScore W3081229384C144133560 @default.
- W3081229384 hasConceptScore W3081229384C149782125 @default.
- W3081229384 hasConceptScore W3081229384C154945302 @default.
- W3081229384 hasConceptScore W3081229384C158600405 @default.
- W3081229384 hasConceptScore W3081229384C160234255 @default.
- W3081229384 hasConceptScore W3081229384C162324750 @default.
- W3081229384 hasConceptScore W3081229384C2522767166 @default.
- W3081229384 hasConceptScore W3081229384C2776214188 @default.
- W3081229384 hasConceptScore W3081229384C2779134260 @default.
- W3081229384 hasConceptScore W3081229384C3008058167 @default.
- W3081229384 hasConceptScore W3081229384C33724603 @default.
- W3081229384 hasConceptScore W3081229384C33923547 @default.
- W3081229384 hasConceptScore W3081229384C41008148 @default.
- W3081229384 hasConceptScore W3081229384C42475967 @default.
- W3081229384 hasConceptScore W3081229384C524204448 @default.
- W3081229384 hasConceptScore W3081229384C71924100 @default.