Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081243911> ?p ?o ?g. }
- W3081243911 endingPage "155562" @default.
- W3081243911 startingPage "155548" @default.
- W3081243911 abstract "Automatic segmentation of the cancerous esophagus in computed tomography (CT) images is a computer-assisted method that can improve the efficiency of the diagnosis and treatment. Due to the diversity of the cancer stage and location, the anatomical structure of the cancerous esophagus is various. Moreover, the low contrast against surrounding tissues leads to a blurry boundary of the cancerous esophagus. Therefore, existing segmentation networks cannot achieve satisfactory results in automatic segmentation of the cancerous esophagus. In this article, we propose a novel 2.5D segmentation network named Eso-Net for the cancerous esophagus based on an encoder-decoder architecture. A 3D enhancement filter called Multi-Structure Response Filter (MSRF) is designed to extract 3D structural information as prior knowledge. Furthermore, dilated convolutions and residual connections are employed in the convolutional blocks of Eso-Net for multi-scale feature learning. With 3D structural priors, Prior Attention Modules (PAM) are incorporated into the network to facilitate the transmission of relevant spatial information. The experiments are conducted on the dataset from 30 esophageal cancer patients, and we report an 84.839% dice similarity coefficient, an 85.955% precision, an 83.752% sensitivity, and a 2.583mm Hausdorff distance. The experimental results demonstrate that the proposed method outperforms other existing segmentation networks in this task and can effectively assist doctors in the diagnosis and treatment of esophageal cancer." @default.
- W3081243911 created "2020-09-01" @default.
- W3081243911 creator A5002560091 @default.
- W3081243911 creator A5005772506 @default.
- W3081243911 creator A5006709942 @default.
- W3081243911 creator A5007409112 @default.
- W3081243911 creator A5013549550 @default.
- W3081243911 creator A5015042905 @default.
- W3081243911 creator A5022036826 @default.
- W3081243911 creator A5032362514 @default.
- W3081243911 creator A5046499337 @default.
- W3081243911 creator A5059128927 @default.
- W3081243911 date "2020-01-01" @default.
- W3081243911 modified "2023-10-14" @default.
- W3081243911 title "Eso-Net: A Novel 2.5D Segmentation Network With the Multi-Structure Response Filter for the Cancerous Esophagus" @default.
- W3081243911 cites W1895673976 @default.
- W3081243911 cites W1901129140 @default.
- W3081243911 cites W1969525503 @default.
- W3081243911 cites W1971997700 @default.
- W3081243911 cites W2071574906 @default.
- W3081243911 cites W2077902604 @default.
- W3081243911 cites W2098385973 @default.
- W3081243911 cites W2109200236 @default.
- W3081243911 cites W2112081648 @default.
- W3081243911 cites W2123340620 @default.
- W3081243911 cites W2129534965 @default.
- W3081243911 cites W2162106299 @default.
- W3081243911 cites W2327517543 @default.
- W3081243911 cites W2395611524 @default.
- W3081243911 cites W2412782625 @default.
- W3081243911 cites W2560023338 @default.
- W3081243911 cites W2589873721 @default.
- W3081243911 cites W2592939477 @default.
- W3081243911 cites W2734776202 @default.
- W3081243911 cites W2752782242 @default.
- W3081243911 cites W2759084104 @default.
- W3081243911 cites W2765345722 @default.
- W3081243911 cites W2772252639 @default.
- W3081243911 cites W2773701969 @default.
- W3081243911 cites W2889646458 @default.
- W3081243911 cites W2951901661 @default.
- W3081243911 cites W2962914239 @default.
- W3081243911 cites W2963794428 @default.
- W3081243911 cites W2963881378 @default.
- W3081243911 cites W2964217532 @default.
- W3081243911 cites W2974459041 @default.
- W3081243911 cites W2981689412 @default.
- W3081243911 cites W2996290406 @default.
- W3081243911 cites W3101507774 @default.
- W3081243911 cites W3105636206 @default.
- W3081243911 doi "https://doi.org/10.1109/access.2020.3019518" @default.
- W3081243911 hasPublicationYear "2020" @default.
- W3081243911 type Work @default.
- W3081243911 sameAs 3081243911 @default.
- W3081243911 citedByCount "4" @default.
- W3081243911 countsByYear W30812439112021 @default.
- W3081243911 countsByYear W30812439112022 @default.
- W3081243911 countsByYear W30812439112023 @default.
- W3081243911 crossrefType "journal-article" @default.
- W3081243911 hasAuthorship W3081243911A5002560091 @default.
- W3081243911 hasAuthorship W3081243911A5005772506 @default.
- W3081243911 hasAuthorship W3081243911A5006709942 @default.
- W3081243911 hasAuthorship W3081243911A5007409112 @default.
- W3081243911 hasAuthorship W3081243911A5013549550 @default.
- W3081243911 hasAuthorship W3081243911A5015042905 @default.
- W3081243911 hasAuthorship W3081243911A5022036826 @default.
- W3081243911 hasAuthorship W3081243911A5032362514 @default.
- W3081243911 hasAuthorship W3081243911A5046499337 @default.
- W3081243911 hasAuthorship W3081243911A5059128927 @default.
- W3081243911 hasBestOaLocation W30812439111 @default.
- W3081243911 hasConcept C103278499 @default.
- W3081243911 hasConcept C106131492 @default.
- W3081243911 hasConcept C115961682 @default.
- W3081243911 hasConcept C124504099 @default.
- W3081243911 hasConcept C138885662 @default.
- W3081243911 hasConcept C141071460 @default.
- W3081243911 hasConcept C141898687 @default.
- W3081243911 hasConcept C153180895 @default.
- W3081243911 hasConcept C154945302 @default.
- W3081243911 hasConcept C163892561 @default.
- W3081243911 hasConcept C2776401178 @default.
- W3081243911 hasConcept C2777819096 @default.
- W3081243911 hasConcept C31972630 @default.
- W3081243911 hasConcept C41008148 @default.
- W3081243911 hasConcept C41895202 @default.
- W3081243911 hasConcept C71924100 @default.
- W3081243911 hasConcept C81363708 @default.
- W3081243911 hasConcept C89600930 @default.
- W3081243911 hasConceptScore W3081243911C103278499 @default.
- W3081243911 hasConceptScore W3081243911C106131492 @default.
- W3081243911 hasConceptScore W3081243911C115961682 @default.
- W3081243911 hasConceptScore W3081243911C124504099 @default.
- W3081243911 hasConceptScore W3081243911C138885662 @default.
- W3081243911 hasConceptScore W3081243911C141071460 @default.
- W3081243911 hasConceptScore W3081243911C141898687 @default.
- W3081243911 hasConceptScore W3081243911C153180895 @default.
- W3081243911 hasConceptScore W3081243911C154945302 @default.
- W3081243911 hasConceptScore W3081243911C163892561 @default.