Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081246258> ?p ?o ?g. }
- W3081246258 endingPage "125121" @default.
- W3081246258 startingPage "125121" @default.
- W3081246258 abstract "We investigate the estimation of transfer entropy (TE) for short time sequences by correlation-dependent balanced estimation of diffusion entropy employed in the transfer entropy (CBEDETE) method and the normal transfer entropy (NTE) method. Our finding shows that the CBEDETE method is more effective than the NTE method on TE calculation for short time series. Based on this conclusion, we use 38 important stock market indices from 4 continents to create successive financial networks with 10∼60-day windows and 1-day step by the CBEDETE method. By extracting the evolution characteristics of out-/in-degree of stock networks, we obtain the most influential stocks RTS, KOSPI, PSI, NIKKE and AORD of Europe, Asia and Oceania and the most influenced stocks IBOVESPA, NYSE, NASD and MERV of America. Finally, by monitoring the ratio of link numbers of each network and smoothing the curves, we find an interesting result that almost all effective peaks in the smoothed ratio curves are prior to the financial crises, such as the global financial crisis in 2008, China’s stock market crash in 2015, etc." @default.
- W3081246258 created "2020-09-01" @default.
- W3081246258 creator A5027635271 @default.
- W3081246258 creator A5033829704 @default.
- W3081246258 date "2020-12-01" @default.
- W3081246258 modified "2023-09-29" @default.
- W3081246258 title "Transfer entropy calculation for short time sequences with application to stock markets" @default.
- W3081246258 cites W1550023159 @default.
- W3081246258 cites W1586537758 @default.
- W3081246258 cites W1671607941 @default.
- W3081246258 cites W1972449691 @default.
- W3081246258 cites W1972752798 @default.
- W3081246258 cites W1978333359 @default.
- W3081246258 cites W1979259289 @default.
- W3081246258 cites W1997901354 @default.
- W3081246258 cites W2019592129 @default.
- W3081246258 cites W2051543407 @default.
- W3081246258 cites W2071113651 @default.
- W3081246258 cites W2071989361 @default.
- W3081246258 cites W2073128439 @default.
- W3081246258 cites W2075124914 @default.
- W3081246258 cites W2083278075 @default.
- W3081246258 cites W2089954894 @default.
- W3081246258 cites W2090332416 @default.
- W3081246258 cites W2116199452 @default.
- W3081246258 cites W2134784378 @default.
- W3081246258 cites W2158140512 @default.
- W3081246258 cites W2170979592 @default.
- W3081246258 cites W2224635176 @default.
- W3081246258 cites W2273968408 @default.
- W3081246258 cites W2324557663 @default.
- W3081246258 cites W2329933338 @default.
- W3081246258 cites W2474601267 @default.
- W3081246258 cites W2546429961 @default.
- W3081246258 cites W2560318754 @default.
- W3081246258 cites W2592580312 @default.
- W3081246258 cites W2620638594 @default.
- W3081246258 cites W2768242818 @default.
- W3081246258 cites W2792693966 @default.
- W3081246258 cites W2941142095 @default.
- W3081246258 cites W3099467122 @default.
- W3081246258 cites W3100814801 @default.
- W3081246258 cites W3121631443 @default.
- W3081246258 cites W3124620569 @default.
- W3081246258 doi "https://doi.org/10.1016/j.physa.2020.125121" @default.
- W3081246258 hasPublicationYear "2020" @default.
- W3081246258 type Work @default.
- W3081246258 sameAs 3081246258 @default.
- W3081246258 citedByCount "8" @default.
- W3081246258 countsByYear W30812462582021 @default.
- W3081246258 countsByYear W30812462582022 @default.
- W3081246258 crossrefType "journal-article" @default.
- W3081246258 hasAuthorship W3081246258A5027635271 @default.
- W3081246258 hasAuthorship W3081246258A5033829704 @default.
- W3081246258 hasConcept C105795698 @default.
- W3081246258 hasConcept C106301342 @default.
- W3081246258 hasConcept C121332964 @default.
- W3081246258 hasConcept C121864883 @default.
- W3081246258 hasConcept C127313418 @default.
- W3081246258 hasConcept C139719470 @default.
- W3081246258 hasConcept C149782125 @default.
- W3081246258 hasConcept C151730666 @default.
- W3081246258 hasConcept C162324750 @default.
- W3081246258 hasConcept C166957645 @default.
- W3081246258 hasConcept C182049051 @default.
- W3081246258 hasConcept C204036174 @default.
- W3081246258 hasConcept C205649164 @default.
- W3081246258 hasConcept C2777209242 @default.
- W3081246258 hasConcept C2778300220 @default.
- W3081246258 hasConcept C2780299701 @default.
- W3081246258 hasConcept C2780762169 @default.
- W3081246258 hasConcept C33923547 @default.
- W3081246258 hasConcept C3770464 @default.
- W3081246258 hasConcept C41008148 @default.
- W3081246258 hasConcept C88389905 @default.
- W3081246258 hasConcept C9679016 @default.
- W3081246258 hasConcept C97355855 @default.
- W3081246258 hasConceptScore W3081246258C105795698 @default.
- W3081246258 hasConceptScore W3081246258C106301342 @default.
- W3081246258 hasConceptScore W3081246258C121332964 @default.
- W3081246258 hasConceptScore W3081246258C121864883 @default.
- W3081246258 hasConceptScore W3081246258C127313418 @default.
- W3081246258 hasConceptScore W3081246258C139719470 @default.
- W3081246258 hasConceptScore W3081246258C149782125 @default.
- W3081246258 hasConceptScore W3081246258C151730666 @default.
- W3081246258 hasConceptScore W3081246258C162324750 @default.
- W3081246258 hasConceptScore W3081246258C166957645 @default.
- W3081246258 hasConceptScore W3081246258C182049051 @default.
- W3081246258 hasConceptScore W3081246258C204036174 @default.
- W3081246258 hasConceptScore W3081246258C205649164 @default.
- W3081246258 hasConceptScore W3081246258C2777209242 @default.
- W3081246258 hasConceptScore W3081246258C2778300220 @default.
- W3081246258 hasConceptScore W3081246258C2780299701 @default.
- W3081246258 hasConceptScore W3081246258C2780762169 @default.
- W3081246258 hasConceptScore W3081246258C33923547 @default.
- W3081246258 hasConceptScore W3081246258C3770464 @default.
- W3081246258 hasConceptScore W3081246258C41008148 @default.
- W3081246258 hasConceptScore W3081246258C88389905 @default.