Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081272521> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3081272521 endingPage "107828" @default.
- W3081272521 startingPage "107828" @default.
- W3081272521 abstract "Abstract By defining an optimum injection/production strategy in the water flooding process, the water front movement is controlled and an early breakthrough is avoided, and as a result, the sweep efficiency is increased. The most important part of injection/production planning is determining the injection fluid front position. However, using a commercial reservoir simulator comes up with a considerable time and CPU effort, particularly in the case of large and complex reservoirs. Several proxy models, either physics-based or Data-Driven, have been developed to predict water front movement with low computational time and cost, each offering some advantages and shortcomings such as error accumulation and short-term predictions. In this paper, we use a hybrid view in developing a classification based smart proxy model at the grid-block level (CSPMG) for front prediction to benefit from the advantages of both physics-based and Data-Driven proxies. The idea is to formulate the problem by using the physical principles underlying the problem (physical-view) and then use machine learning classification models to capture the pattern between inputs and the target feature (Data-Driven view). Based on the Buckley-Leverett theory, which is a physics-based method for front advancement in porous media, water front prediction was formulated as a classification problem in which the grid-blocks behind and ahead of the front were considered as separate classes and a label was assigned to each class. Then, artificial neural networks (ANNs) were trained on a training database to predict the class label of each grid block. The water front was considered as the boundary between two adjacent classes. A binary and a ternary classification problem were formulated and two proxy models were developed. A blind test was carried out to compare their results with each other, with a Data-Driven regression model, and with those of a reservoir simulator. The results showed that the CSPMG matches the reservoir simulator results and outperforms the regression model and makes longer predictions." @default.
- W3081272521 created "2020-09-01" @default.
- W3081272521 creator A5007763889 @default.
- W3081272521 creator A5030755238 @default.
- W3081272521 creator A5041767870 @default.
- W3081272521 creator A5091403487 @default.
- W3081272521 date "2021-01-01" @default.
- W3081272521 modified "2023-09-28" @default.
- W3081272521 title "A physically-supported data-driven proxy modeling based on machine learning classification methods: Application to water front movement prediction" @default.
- W3081272521 cites W1576825000 @default.
- W3081272521 cites W2038178317 @default.
- W3081272521 cites W2040799879 @default.
- W3081272521 cites W2050248246 @default.
- W3081272521 cites W2050781355 @default.
- W3081272521 cites W2080795323 @default.
- W3081272521 cites W2346768207 @default.
- W3081272521 cites W2589768045 @default.
- W3081272521 cites W2892078682 @default.
- W3081272521 cites W2918175718 @default.
- W3081272521 cites W2939533724 @default.
- W3081272521 cites W2939919934 @default.
- W3081272521 cites W2973061192 @default.
- W3081272521 cites W2983594980 @default.
- W3081272521 cites W2989996996 @default.
- W3081272521 cites W3003462583 @default.
- W3081272521 cites W3011415648 @default.
- W3081272521 cites W3015570394 @default.
- W3081272521 cites W3026184503 @default.
- W3081272521 cites W3037649759 @default.
- W3081272521 doi "https://doi.org/10.1016/j.petrol.2020.107828" @default.
- W3081272521 hasPublicationYear "2021" @default.
- W3081272521 type Work @default.
- W3081272521 sameAs 3081272521 @default.
- W3081272521 citedByCount "7" @default.
- W3081272521 countsByYear W30812725212022 @default.
- W3081272521 countsByYear W30812725212023 @default.
- W3081272521 crossrefType "journal-article" @default.
- W3081272521 hasAuthorship W3081272521A5007763889 @default.
- W3081272521 hasAuthorship W3081272521A5030755238 @default.
- W3081272521 hasAuthorship W3081272521A5041767870 @default.
- W3081272521 hasAuthorship W3081272521A5091403487 @default.
- W3081272521 hasConcept C107038049 @default.
- W3081272521 hasConcept C119857082 @default.
- W3081272521 hasConcept C124101348 @default.
- W3081272521 hasConcept C127413603 @default.
- W3081272521 hasConcept C138885662 @default.
- W3081272521 hasConcept C154945302 @default.
- W3081272521 hasConcept C2777551076 @default.
- W3081272521 hasConcept C2780148112 @default.
- W3081272521 hasConcept C2780226923 @default.
- W3081272521 hasConcept C41008148 @default.
- W3081272521 hasConcept C78519656 @default.
- W3081272521 hasConceptScore W3081272521C107038049 @default.
- W3081272521 hasConceptScore W3081272521C119857082 @default.
- W3081272521 hasConceptScore W3081272521C124101348 @default.
- W3081272521 hasConceptScore W3081272521C127413603 @default.
- W3081272521 hasConceptScore W3081272521C138885662 @default.
- W3081272521 hasConceptScore W3081272521C154945302 @default.
- W3081272521 hasConceptScore W3081272521C2777551076 @default.
- W3081272521 hasConceptScore W3081272521C2780148112 @default.
- W3081272521 hasConceptScore W3081272521C2780226923 @default.
- W3081272521 hasConceptScore W3081272521C41008148 @default.
- W3081272521 hasConceptScore W3081272521C78519656 @default.
- W3081272521 hasLocation W30812725211 @default.
- W3081272521 hasOpenAccess W3081272521 @default.
- W3081272521 hasPrimaryLocation W30812725211 @default.
- W3081272521 hasRelatedWork W2368066043 @default.
- W3081272521 hasRelatedWork W2961085424 @default.
- W3081272521 hasRelatedWork W3046775127 @default.
- W3081272521 hasRelatedWork W3107474891 @default.
- W3081272521 hasRelatedWork W3209574120 @default.
- W3081272521 hasRelatedWork W4205958290 @default.
- W3081272521 hasRelatedWork W4286629047 @default.
- W3081272521 hasRelatedWork W4306321456 @default.
- W3081272521 hasRelatedWork W4306674287 @default.
- W3081272521 hasRelatedWork W4224009465 @default.
- W3081272521 hasVolume "196" @default.
- W3081272521 isParatext "false" @default.
- W3081272521 isRetracted "false" @default.
- W3081272521 magId "3081272521" @default.
- W3081272521 workType "article" @default.