Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081272892> ?p ?o ?g. }
- W3081272892 endingPage "4368" @default.
- W3081272892 startingPage "4368" @default.
- W3081272892 abstract "Energy baseline is an important method for measuring the energy-saving benefits of chiller system, and the benefits can be calculated by comparing prediction models and actual results. Currently, machine learning is often adopted as a prediction model for energy baselines. Common models include regression, ensemble learning, and deep learning models. In this study, we first reviewed several machine learning algorithms, which were used to establish prediction models. Then, the concept of clustering to preprocess chiller data was adopted. Data mining, K-means clustering, and gap statistic were used to successfully identify the critical variables to cluster chiller modes. Applying these key variables effectively enhanced the quality of the chiller data, and combining the clustering results and the machine learning model effectively improved the prediction accuracy of the model and the reliability of the energy baselines." @default.
- W3081272892 created "2020-09-01" @default.
- W3081272892 creator A5029159915 @default.
- W3081272892 creator A5067174207 @default.
- W3081272892 creator A5069181868 @default.
- W3081272892 date "2020-08-24" @default.
- W3081272892 modified "2023-09-26" @default.
- W3081272892 title "Combine Clustering and Machine Learning for Enhancing the Efficiency of Energy Baseline of Chiller System" @default.
- W3081272892 cites W2011430131 @default.
- W3081272892 cites W2035139756 @default.
- W3081272892 cites W2066435331 @default.
- W3081272892 cites W2071949631 @default.
- W3081272892 cites W2074187210 @default.
- W3081272892 cites W2165700458 @default.
- W3081272892 cites W2422808452 @default.
- W3081272892 cites W2552043664 @default.
- W3081272892 cites W2582381598 @default.
- W3081272892 cites W2743680082 @default.
- W3081272892 cites W2781993324 @default.
- W3081272892 cites W2883210850 @default.
- W3081272892 cites W2940320374 @default.
- W3081272892 cites W2962951515 @default.
- W3081272892 cites W3000720402 @default.
- W3081272892 cites W3008571545 @default.
- W3081272892 doi "https://doi.org/10.3390/en13174368" @default.
- W3081272892 hasPublicationYear "2020" @default.
- W3081272892 type Work @default.
- W3081272892 sameAs 3081272892 @default.
- W3081272892 citedByCount "6" @default.
- W3081272892 countsByYear W30812728922021 @default.
- W3081272892 countsByYear W30812728922022 @default.
- W3081272892 countsByYear W30812728922023 @default.
- W3081272892 crossrefType "journal-article" @default.
- W3081272892 hasAuthorship W3081272892A5029159915 @default.
- W3081272892 hasAuthorship W3081272892A5067174207 @default.
- W3081272892 hasAuthorship W3081272892A5069181868 @default.
- W3081272892 hasBestOaLocation W30812728921 @default.
- W3081272892 hasConcept C105795698 @default.
- W3081272892 hasConcept C111368507 @default.
- W3081272892 hasConcept C119599485 @default.
- W3081272892 hasConcept C119857082 @default.
- W3081272892 hasConcept C121332964 @default.
- W3081272892 hasConcept C124101348 @default.
- W3081272892 hasConcept C12725497 @default.
- W3081272892 hasConcept C127313418 @default.
- W3081272892 hasConcept C127413603 @default.
- W3081272892 hasConcept C131097465 @default.
- W3081272892 hasConcept C154945302 @default.
- W3081272892 hasConcept C182254935 @default.
- W3081272892 hasConcept C186370098 @default.
- W3081272892 hasConcept C199499590 @default.
- W3081272892 hasConcept C24463637 @default.
- W3081272892 hasConcept C26517878 @default.
- W3081272892 hasConcept C2742236 @default.
- W3081272892 hasConcept C33923547 @default.
- W3081272892 hasConcept C38652104 @default.
- W3081272892 hasConcept C41008148 @default.
- W3081272892 hasConcept C4638862 @default.
- W3081272892 hasConcept C73555534 @default.
- W3081272892 hasConcept C78519656 @default.
- W3081272892 hasConcept C89128539 @default.
- W3081272892 hasConcept C97355855 @default.
- W3081272892 hasConceptScore W3081272892C105795698 @default.
- W3081272892 hasConceptScore W3081272892C111368507 @default.
- W3081272892 hasConceptScore W3081272892C119599485 @default.
- W3081272892 hasConceptScore W3081272892C119857082 @default.
- W3081272892 hasConceptScore W3081272892C121332964 @default.
- W3081272892 hasConceptScore W3081272892C124101348 @default.
- W3081272892 hasConceptScore W3081272892C12725497 @default.
- W3081272892 hasConceptScore W3081272892C127313418 @default.
- W3081272892 hasConceptScore W3081272892C127413603 @default.
- W3081272892 hasConceptScore W3081272892C131097465 @default.
- W3081272892 hasConceptScore W3081272892C154945302 @default.
- W3081272892 hasConceptScore W3081272892C182254935 @default.
- W3081272892 hasConceptScore W3081272892C186370098 @default.
- W3081272892 hasConceptScore W3081272892C199499590 @default.
- W3081272892 hasConceptScore W3081272892C24463637 @default.
- W3081272892 hasConceptScore W3081272892C26517878 @default.
- W3081272892 hasConceptScore W3081272892C2742236 @default.
- W3081272892 hasConceptScore W3081272892C33923547 @default.
- W3081272892 hasConceptScore W3081272892C38652104 @default.
- W3081272892 hasConceptScore W3081272892C41008148 @default.
- W3081272892 hasConceptScore W3081272892C4638862 @default.
- W3081272892 hasConceptScore W3081272892C73555534 @default.
- W3081272892 hasConceptScore W3081272892C78519656 @default.
- W3081272892 hasConceptScore W3081272892C89128539 @default.
- W3081272892 hasConceptScore W3081272892C97355855 @default.
- W3081272892 hasIssue "17" @default.
- W3081272892 hasLocation W30812728921 @default.
- W3081272892 hasLocation W30812728922 @default.
- W3081272892 hasLocation W30812728923 @default.
- W3081272892 hasOpenAccess W3081272892 @default.
- W3081272892 hasPrimaryLocation W30812728921 @default.
- W3081272892 hasRelatedWork W2003074450 @default.
- W3081272892 hasRelatedWork W2328748420 @default.
- W3081272892 hasRelatedWork W2349323290 @default.
- W3081272892 hasRelatedWork W2373084361 @default.
- W3081272892 hasRelatedWork W2375263905 @default.