Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081278968> ?p ?o ?g. }
- W3081278968 abstract "Abstract Machine learning methods have been widely applied to big data analysis in genomics and epigenomics research. Although accuracy and efficiency are common goals in many modeling tasks, model interpretability is especially important to these studies towards understanding the underlying molecular and cellular mechanisms. Deep neural networks (DNNs) have recently gained popularity in various types of genomic and epigenomic studies due to their capabilities in utilizing large-scale high-throughput bioinformatics data and achieving high accuracy in predictions and classifications. However, DNNs are often challenged by their potential to explain the predictions due to their black-box nature. In this review, we present current development in the model interpretation of DNNs, focusing on their applications in genomics and epigenomics. We first describe state-of-the-art DNN interpretation methods in representative machine learning fields. We then summarize the DNN interpretation methods in recent studies on genomics and epigenomics, focusing on current data- and computing-intensive topics such as sequence motif identification, genetic variations, gene expression, chromatin interactions and non-coding RNAs. We also present the biological discoveries that resulted from these interpretation methods. We finally discuss the advantages and limitations of current interpretation approaches in the context of genomic and epigenomic studies. Contact:xiaoman@mail.ucf.edu, haihu@cs.ucf.edu" @default.
- W3081278968 created "2020-09-01" @default.
- W3081278968 creator A5007638508 @default.
- W3081278968 creator A5034418164 @default.
- W3081278968 creator A5053178146 @default.
- W3081278968 creator A5086345883 @default.
- W3081278968 date "2020-08-20" @default.
- W3081278968 modified "2023-10-09" @default.
- W3081278968 title "Interpretation of deep learning in genomics and epigenomics" @default.
- W3081278968 cites W1019830208 @default.
- W3081278968 cites W1929414144 @default.
- W3081278968 cites W1932179720 @default.
- W3081278968 cites W1977855308 @default.
- W3081278968 cites W1995224771 @default.
- W3081278968 cites W1999965501 @default.
- W3081278968 cites W2010789111 @default.
- W3081278968 cites W2015845481 @default.
- W3081278968 cites W2016015848 @default.
- W3081278968 cites W2018363492 @default.
- W3081278968 cites W2018608365 @default.
- W3081278968 cites W2019160435 @default.
- W3081278968 cites W2020217377 @default.
- W3081278968 cites W2033169664 @default.
- W3081278968 cites W2040608878 @default.
- W3081278968 cites W2043276282 @default.
- W3081278968 cites W2045791858 @default.
- W3081278968 cites W2073675943 @default.
- W3081278968 cites W2076154138 @default.
- W3081278968 cites W2086607018 @default.
- W3081278968 cites W2089956843 @default.
- W3081278968 cites W2096465161 @default.
- W3081278968 cites W2097175728 @default.
- W3081278968 cites W2100450673 @default.
- W3081278968 cites W2103777723 @default.
- W3081278968 cites W2106100979 @default.
- W3081278968 cites W2115717891 @default.
- W3081278968 cites W2142410561 @default.
- W3081278968 cites W2145674897 @default.
- W3081278968 cites W2158266834 @default.
- W3081278968 cites W2163353298 @default.
- W3081278968 cites W2164814636 @default.
- W3081278968 cites W2168191908 @default.
- W3081278968 cites W2169053895 @default.
- W3081278968 cites W2190008860 @default.
- W3081278968 cites W2195388612 @default.
- W3081278968 cites W2198606573 @default.
- W3081278968 cites W2333286569 @default.
- W3081278968 cites W2336509392 @default.
- W3081278968 cites W2345512687 @default.
- W3081278968 cites W2461407220 @default.
- W3081278968 cites W2479945688 @default.
- W3081278968 cites W2481193391 @default.
- W3081278968 cites W2488346955 @default.
- W3081278968 cites W2514270659 @default.
- W3081278968 cites W2618530766 @default.
- W3081278968 cites W2657631929 @default.
- W3081278968 cites W2727545883 @default.
- W3081278968 cites W2756900458 @default.
- W3081278968 cites W2770178180 @default.
- W3081278968 cites W2771696121 @default.
- W3081278968 cites W2774733631 @default.
- W3081278968 cites W2782522152 @default.
- W3081278968 cites W2785792383 @default.
- W3081278968 cites W2800857888 @default.
- W3081278968 cites W2805029945 @default.
- W3081278968 cites W2884001105 @default.
- W3081278968 cites W2891494568 @default.
- W3081278968 cites W2892479680 @default.
- W3081278968 cites W2896411685 @default.
- W3081278968 cites W2903592773 @default.
- W3081278968 cites W2907025617 @default.
- W3081278968 cites W2919115771 @default.
- W3081278968 cites W2921983621 @default.
- W3081278968 cites W2935703330 @default.
- W3081278968 cites W2951218167 @default.
- W3081278968 cites W2951413354 @default.
- W3081278968 cites W2952239877 @default.
- W3081278968 cites W2952935243 @default.
- W3081278968 cites W2960879592 @default.
- W3081278968 cites W2963266267 @default.
- W3081278968 cites W2963374347 @default.
- W3081278968 cites W2963582649 @default.
- W3081278968 cites W2968830255 @default.
- W3081278968 cites W3014963173 @default.
- W3081278968 cites W4230875896 @default.
- W3081278968 doi "https://doi.org/10.1093/bib/bbaa177" @default.
- W3081278968 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8138893" @default.
- W3081278968 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34020542" @default.
- W3081278968 hasPublicationYear "2020" @default.
- W3081278968 type Work @default.
- W3081278968 sameAs 3081278968 @default.
- W3081278968 citedByCount "51" @default.
- W3081278968 countsByYear W30812789682020 @default.
- W3081278968 countsByYear W30812789682021 @default.
- W3081278968 countsByYear W30812789682022 @default.
- W3081278968 countsByYear W30812789682023 @default.
- W3081278968 crossrefType "journal-article" @default.
- W3081278968 hasAuthorship W3081278968A5007638508 @default.
- W3081278968 hasAuthorship W3081278968A5034418164 @default.
- W3081278968 hasAuthorship W3081278968A5053178146 @default.