Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081315956> ?p ?o ?g. }
- W3081315956 endingPage "155796" @default.
- W3081315956 startingPage "155783" @default.
- W3081315956 abstract "With the increasing demand for multidimensional data processing, Geometric algebra (GA) has attracted more and more attention in the field of geographical information systems. GA unifies and generalizes real numbers and complex, quaternion, and vector algebra, and converts complicated relations and operations into intuitive algebra independent of coordinate systems. It also provides a solution for solving multidimensional information processing with a high correlation among the dimensions and avoids the loss of information. Traditional methods of computer vision and artificial intelligence (AI) provide robust results in multidimensional processing after being combined with GA and give additional feature analysis facility to remote sensing images. In this paper, we provide a detailed review of GA in different fields of AI and computer vision regarding its applications and the current developments in geospatial research. We also discuss the Clifford–Fourier transform (CFT) and quaternions (sub-algebra of GA) because of their necessity in remote sensing image processing. We focus on how GA helps AI and solves classification problems, as well as improving these methods using geometric algebra processing. Finally, we discuss the issues, challenges, and future perspectives of GA with regards to possible research directions." @default.
- W3081315956 created "2020-09-01" @default.
- W3081315956 creator A5016543916 @default.
- W3081315956 creator A5030248771 @default.
- W3081315956 creator A5033258501 @default.
- W3081315956 creator A5041754684 @default.
- W3081315956 creator A5059684983 @default.
- W3081315956 creator A5059823757 @default.
- W3081315956 creator A5061187994 @default.
- W3081315956 creator A5068497484 @default.
- W3081315956 creator A5091351481 @default.
- W3081315956 date "2020-01-01" @default.
- W3081315956 modified "2023-10-13" @default.
- W3081315956 title "Geometric Algebra Applications in Geospatial Artificial Intelligence and Remote Sensing Image Processing" @default.
- W3081315956 cites W140657133 @default.
- W3081315956 cites W1481249923 @default.
- W3081315956 cites W1567272927 @default.
- W3081315956 cites W1593361846 @default.
- W3081315956 cites W1603996937 @default.
- W3081315956 cites W1966665485 @default.
- W3081315956 cites W1972191015 @default.
- W3081315956 cites W1978832675 @default.
- W3081315956 cites W2001474526 @default.
- W3081315956 cites W2014908235 @default.
- W3081315956 cites W2024467433 @default.
- W3081315956 cites W2026942921 @default.
- W3081315956 cites W2037187052 @default.
- W3081315956 cites W2037638990 @default.
- W3081315956 cites W2052223824 @default.
- W3081315956 cites W2055184781 @default.
- W3081315956 cites W2062210787 @default.
- W3081315956 cites W2072273345 @default.
- W3081315956 cites W2091672503 @default.
- W3081315956 cites W2097446478 @default.
- W3081315956 cites W2104744826 @default.
- W3081315956 cites W2128618097 @default.
- W3081315956 cites W2136355123 @default.
- W3081315956 cites W2137091003 @default.
- W3081315956 cites W2145412836 @default.
- W3081315956 cites W2170860445 @default.
- W3081315956 cites W2274086927 @default.
- W3081315956 cites W2295282095 @default.
- W3081315956 cites W2316381262 @default.
- W3081315956 cites W2344951837 @default.
- W3081315956 cites W2470019652 @default.
- W3081315956 cites W248012137 @default.
- W3081315956 cites W2484995194 @default.
- W3081315956 cites W2486389867 @default.
- W3081315956 cites W2489292218 @default.
- W3081315956 cites W2557048815 @default.
- W3081315956 cites W2738312616 @default.
- W3081315956 cites W2792836087 @default.
- W3081315956 cites W2811477808 @default.
- W3081315956 cites W2884642958 @default.
- W3081315956 cites W2901096848 @default.
- W3081315956 cites W2904080995 @default.
- W3081315956 cites W2908758032 @default.
- W3081315956 cites W2924805576 @default.
- W3081315956 cites W2954752463 @default.
- W3081315956 cites W2964483018 @default.
- W3081315956 cites W2969590833 @default.
- W3081315956 cites W2998024136 @default.
- W3081315956 cites W2999978779 @default.
- W3081315956 cites W3001157907 @default.
- W3081315956 cites W3017123442 @default.
- W3081315956 cites W3045880280 @default.
- W3081315956 doi "https://doi.org/10.1109/access.2020.3018544" @default.
- W3081315956 hasPublicationYear "2020" @default.
- W3081315956 type Work @default.
- W3081315956 sameAs 3081315956 @default.
- W3081315956 citedByCount "38" @default.
- W3081315956 countsByYear W30813159562020 @default.
- W3081315956 countsByYear W30813159562021 @default.
- W3081315956 countsByYear W30813159562022 @default.
- W3081315956 countsByYear W30813159562023 @default.
- W3081315956 crossrefType "journal-article" @default.
- W3081315956 hasAuthorship W3081315956A5016543916 @default.
- W3081315956 hasAuthorship W3081315956A5030248771 @default.
- W3081315956 hasAuthorship W3081315956A5033258501 @default.
- W3081315956 hasAuthorship W3081315956A5041754684 @default.
- W3081315956 hasAuthorship W3081315956A5059684983 @default.
- W3081315956 hasAuthorship W3081315956A5059823757 @default.
- W3081315956 hasAuthorship W3081315956A5061187994 @default.
- W3081315956 hasAuthorship W3081315956A5068497484 @default.
- W3081315956 hasAuthorship W3081315956A5091351481 @default.
- W3081315956 hasBestOaLocation W30813159561 @default.
- W3081315956 hasConcept C100856211 @default.
- W3081315956 hasConcept C11413529 @default.
- W3081315956 hasConcept C115961682 @default.
- W3081315956 hasConcept C127313418 @default.
- W3081315956 hasConcept C136119220 @default.
- W3081315956 hasConcept C138354692 @default.
- W3081315956 hasConcept C138885662 @default.
- W3081315956 hasConcept C14394260 @default.
- W3081315956 hasConcept C147898140 @default.
- W3081315956 hasConcept C151640129 @default.
- W3081315956 hasConcept C154945302 @default.
- W3081315956 hasConcept C180671464 @default.