Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081323070> ?p ?o ?g. }
- W3081323070 endingPage "9799" @default.
- W3081323070 startingPage "9787" @default.
- W3081323070 abstract "Employing unmanned aerial vehicles (UAVs) as aerial data collectors in Internet-of-Things (IoT) networks is a promising technology for large-scale environment sensing. A key challenge in UAV-aided data collection is that UAV maneuvering gives rise to buffer overflow at the IoT node and unsuccessful transmission due to lossy airborne channels. This article formulates a joint optimization of flight cruise control and data collection schedule to minimize network data loss as a partially observable Markov decision process (POMDP), where the states of individual IoT nodes can be obscure to the UAV. The problem can be optimally solvable by reinforcement learning, but suffers from the curse of dimensionality and becomes rapidly intractable with the growth in the number of IoT nodes. In practice, a UAV-aided IoT network contains a large number of network states and actions in POMDP while the up-to-date knowledge is not available at the UAV. We propose an onboard deep Q-network-based flight resource allocation scheme (DQN-FRAS) to optimize the online flight cruise control of the UAV and data scheduling given outdated knowledge on the network states. Numerical results demonstrate that DQN-FRAS reduces the packet loss by over 51%, as compared to existing nonlearning heuristics." @default.
- W3081323070 created "2020-09-01" @default.
- W3081323070 creator A5014398683 @default.
- W3081323070 creator A5016177128 @default.
- W3081323070 creator A5021527965 @default.
- W3081323070 creator A5078183455 @default.
- W3081323070 date "2021-06-15" @default.
- W3081323070 modified "2023-10-13" @default.
- W3081323070 title "Joint Flight Cruise Control and Data Collection in UAV-Aided Internet of Things: An Onboard Deep Reinforcement Learning Approach" @default.
- W3081323070 cites W1979833275 @default.
- W3081323070 cites W2031433135 @default.
- W3081323070 cites W2039409843 @default.
- W3081323070 cites W2096698697 @default.
- W3081323070 cites W2104250954 @default.
- W3081323070 cites W2125001944 @default.
- W3081323070 cites W2137152139 @default.
- W3081323070 cites W2214621252 @default.
- W3081323070 cites W2276486856 @default.
- W3081323070 cites W2285553406 @default.
- W3081323070 cites W2342830374 @default.
- W3081323070 cites W2382354666 @default.
- W3081323070 cites W2522615148 @default.
- W3081323070 cites W2586992378 @default.
- W3081323070 cites W2597364644 @default.
- W3081323070 cites W2750306308 @default.
- W3081323070 cites W2782363571 @default.
- W3081323070 cites W2782943365 @default.
- W3081323070 cites W2783103509 @default.
- W3081323070 cites W2783184536 @default.
- W3081323070 cites W2802164917 @default.
- W3081323070 cites W2886509985 @default.
- W3081323070 cites W2889656324 @default.
- W3081323070 cites W2899223021 @default.
- W3081323070 cites W2925554975 @default.
- W3081323070 cites W2962889437 @default.
- W3081323070 cites W2962890638 @default.
- W3081323070 cites W2963035841 @default.
- W3081323070 cites W2963061782 @default.
- W3081323070 cites W2963576178 @default.
- W3081323070 cites W2963721752 @default.
- W3081323070 cites W2964018918 @default.
- W3081323070 cites W2964114200 @default.
- W3081323070 cites W2964125271 @default.
- W3081323070 cites W2964209416 @default.
- W3081323070 cites W2979035384 @default.
- W3081323070 cites W3007091509 @default.
- W3081323070 cites W3009869133 @default.
- W3081323070 cites W3015351299 @default.
- W3081323070 cites W3098379356 @default.
- W3081323070 cites W3106530718 @default.
- W3081323070 cites W32403112 @default.
- W3081323070 cites W4250589301 @default.
- W3081323070 doi "https://doi.org/10.1109/jiot.2020.3019186" @default.
- W3081323070 hasPublicationYear "2021" @default.
- W3081323070 type Work @default.
- W3081323070 sameAs 3081323070 @default.
- W3081323070 citedByCount "34" @default.
- W3081323070 countsByYear W30813230702021 @default.
- W3081323070 countsByYear W30813230702022 @default.
- W3081323070 countsByYear W30813230702023 @default.
- W3081323070 crossrefType "journal-article" @default.
- W3081323070 hasAuthorship W3081323070A5014398683 @default.
- W3081323070 hasAuthorship W3081323070A5016177128 @default.
- W3081323070 hasAuthorship W3081323070A5021527965 @default.
- W3081323070 hasAuthorship W3081323070A5078183455 @default.
- W3081323070 hasConcept C105795698 @default.
- W3081323070 hasConcept C106189395 @default.
- W3081323070 hasConcept C111368507 @default.
- W3081323070 hasConcept C111919701 @default.
- W3081323070 hasConcept C119857082 @default.
- W3081323070 hasConcept C120314980 @default.
- W3081323070 hasConcept C126255220 @default.
- W3081323070 hasConcept C127313418 @default.
- W3081323070 hasConcept C127705205 @default.
- W3081323070 hasConcept C154945302 @default.
- W3081323070 hasConcept C158379750 @default.
- W3081323070 hasConcept C159886148 @default.
- W3081323070 hasConcept C163836022 @default.
- W3081323070 hasConcept C17098449 @default.
- W3081323070 hasConcept C173801870 @default.
- W3081323070 hasConcept C206729178 @default.
- W3081323070 hasConcept C2778821358 @default.
- W3081323070 hasConcept C31258907 @default.
- W3081323070 hasConcept C33923547 @default.
- W3081323070 hasConcept C41008148 @default.
- W3081323070 hasConcept C79403827 @default.
- W3081323070 hasConcept C97541855 @default.
- W3081323070 hasConcept C98763669 @default.
- W3081323070 hasConceptScore W3081323070C105795698 @default.
- W3081323070 hasConceptScore W3081323070C106189395 @default.
- W3081323070 hasConceptScore W3081323070C111368507 @default.
- W3081323070 hasConceptScore W3081323070C111919701 @default.
- W3081323070 hasConceptScore W3081323070C119857082 @default.
- W3081323070 hasConceptScore W3081323070C120314980 @default.
- W3081323070 hasConceptScore W3081323070C126255220 @default.
- W3081323070 hasConceptScore W3081323070C127313418 @default.
- W3081323070 hasConceptScore W3081323070C127705205 @default.
- W3081323070 hasConceptScore W3081323070C154945302 @default.