Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081326063> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3081326063 endingPage "1387" @default.
- W3081326063 startingPage "1387" @default.
- W3081326063 abstract "Image identification, machine learning and deep learning technologies have been applied in various fields. However, the application of image identification currently focuses on object detection and identification in order to determine a single momentary picture. This paper not only proposes multiple feature dependency detection to identify key parts of pets (mouth and tail) but also combines the meaning of the pet’s bark (growl and cry) to identify the pet’s mood and state. Therefore, it is necessary to consider changes of pet hair and ages. To this end, we add an automatic optimization identification module subsystem to respond to changes of pet hair and ages in real time. After successfully identifying images of featured parts each time, our system captures images of the identified featured parts and stores them as effective samples for subsequent training and improving the identification ability of the system. When the identification result is transmitted to the owner each time, the owner can get the current mood and state of the pet in real time. According to the experimental results, our system can use a faster R-CNN model to improve 27.47%, 68.17% and 26.23% accuracy of traditional image identification in the mood of happy, angry and sad respectively." @default.
- W3081326063 created "2020-09-01" @default.
- W3081326063 creator A5009441414 @default.
- W3081326063 creator A5011546396 @default.
- W3081326063 creator A5058560253 @default.
- W3081326063 creator A5061101228 @default.
- W3081326063 date "2020-08-27" @default.
- W3081326063 modified "2023-09-24" @default.
- W3081326063 title "Multiple Feature Dependency Detection for Deep Learning Technology—Smart Pet Surveillance System Implementation" @default.
- W3081326063 cites W1978151303 @default.
- W3081326063 cites W2183182206 @default.
- W3081326063 cites W2973696262 @default.
- W3081326063 cites W2978186356 @default.
- W3081326063 cites W2996275178 @default.
- W3081326063 cites W3024009151 @default.
- W3081326063 cites W639708223 @default.
- W3081326063 doi "https://doi.org/10.3390/electronics9091387" @default.
- W3081326063 hasPublicationYear "2020" @default.
- W3081326063 type Work @default.
- W3081326063 sameAs 3081326063 @default.
- W3081326063 citedByCount "8" @default.
- W3081326063 countsByYear W30813260632020 @default.
- W3081326063 countsByYear W30813260632021 @default.
- W3081326063 countsByYear W30813260632022 @default.
- W3081326063 countsByYear W30813260632023 @default.
- W3081326063 crossrefType "journal-article" @default.
- W3081326063 hasAuthorship W3081326063A5009441414 @default.
- W3081326063 hasAuthorship W3081326063A5011546396 @default.
- W3081326063 hasAuthorship W3081326063A5058560253 @default.
- W3081326063 hasAuthorship W3081326063A5061101228 @default.
- W3081326063 hasBestOaLocation W30813260631 @default.
- W3081326063 hasConcept C108583219 @default.
- W3081326063 hasConcept C116834253 @default.
- W3081326063 hasConcept C118552586 @default.
- W3081326063 hasConcept C119857082 @default.
- W3081326063 hasConcept C138885662 @default.
- W3081326063 hasConcept C153180895 @default.
- W3081326063 hasConcept C154945302 @default.
- W3081326063 hasConcept C15744967 @default.
- W3081326063 hasConcept C19768560 @default.
- W3081326063 hasConcept C2776151529 @default.
- W3081326063 hasConcept C2776401178 @default.
- W3081326063 hasConcept C2780733359 @default.
- W3081326063 hasConcept C31972630 @default.
- W3081326063 hasConcept C41008148 @default.
- W3081326063 hasConcept C41895202 @default.
- W3081326063 hasConcept C59822182 @default.
- W3081326063 hasConcept C86803240 @default.
- W3081326063 hasConceptScore W3081326063C108583219 @default.
- W3081326063 hasConceptScore W3081326063C116834253 @default.
- W3081326063 hasConceptScore W3081326063C118552586 @default.
- W3081326063 hasConceptScore W3081326063C119857082 @default.
- W3081326063 hasConceptScore W3081326063C138885662 @default.
- W3081326063 hasConceptScore W3081326063C153180895 @default.
- W3081326063 hasConceptScore W3081326063C154945302 @default.
- W3081326063 hasConceptScore W3081326063C15744967 @default.
- W3081326063 hasConceptScore W3081326063C19768560 @default.
- W3081326063 hasConceptScore W3081326063C2776151529 @default.
- W3081326063 hasConceptScore W3081326063C2776401178 @default.
- W3081326063 hasConceptScore W3081326063C2780733359 @default.
- W3081326063 hasConceptScore W3081326063C31972630 @default.
- W3081326063 hasConceptScore W3081326063C41008148 @default.
- W3081326063 hasConceptScore W3081326063C41895202 @default.
- W3081326063 hasConceptScore W3081326063C59822182 @default.
- W3081326063 hasConceptScore W3081326063C86803240 @default.
- W3081326063 hasIssue "9" @default.
- W3081326063 hasLocation W30813260631 @default.
- W3081326063 hasOpenAccess W3081326063 @default.
- W3081326063 hasPrimaryLocation W30813260631 @default.
- W3081326063 hasRelatedWork W2922421953 @default.
- W3081326063 hasRelatedWork W2970686063 @default.
- W3081326063 hasRelatedWork W3002270006 @default.
- W3081326063 hasRelatedWork W4223943233 @default.
- W3081326063 hasRelatedWork W4309045103 @default.
- W3081326063 hasRelatedWork W4312200629 @default.
- W3081326063 hasRelatedWork W4360585206 @default.
- W3081326063 hasRelatedWork W4364306694 @default.
- W3081326063 hasRelatedWork W4380075502 @default.
- W3081326063 hasRelatedWork W4380086463 @default.
- W3081326063 hasVolume "9" @default.
- W3081326063 isParatext "false" @default.
- W3081326063 isRetracted "false" @default.
- W3081326063 magId "3081326063" @default.
- W3081326063 workType "article" @default.