Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081416984> ?p ?o ?g. }
- W3081416984 abstract "A bstract Inferring molecular structure from NMR measurements requires an accurate forward model that can predict chemical shifts from 3D structure. Current forward models are limited to specific molecules like proteins and state of the art models are not differentiable. Thus they cannot be used with gradient methods like biased molecular dynamics. Here we use graph neural networks (GNNs) for NMR chemical shift prediction. Our GNN can model chemical shifts accurately and capture important phenomena like hydrogen bonding induced downfield shift between multiple proteins, secondary structure effects, and predict shifts of organic molecules. Previous empirical NMR models of protein NMR have relied on careful feature engineering with domain expertise. These GNNs are trained from data alone with no feature engineering yet are as accurate and can work on arbitrary molecular structures. The models are also efficient, able to compute one million chemical shifts in about 5 seconds. This work enables a new category of NMR models that have multiple interacting types of macromolecules." @default.
- W3081416984 created "2020-09-01" @default.
- W3081416984 creator A5029661948 @default.
- W3081416984 creator A5039384552 @default.
- W3081416984 creator A5055379283 @default.
- W3081416984 date "2020-08-27" @default.
- W3081416984 modified "2023-10-14" @default.
- W3081416984 title "Predicting Chemical Shifts with Graph Neural Networks" @default.
- W3081416984 cites W1498088837 @default.
- W3081416984 cites W1575925268 @default.
- W3081416984 cites W1843396089 @default.
- W3081416984 cites W1873275180 @default.
- W3081416984 cites W1972594892 @default.
- W3081416984 cites W1974225312 @default.
- W3081416984 cites W1995987908 @default.
- W3081416984 cites W1998015893 @default.
- W3081416984 cites W1998559525 @default.
- W3081416984 cites W2007701882 @default.
- W3081416984 cites W2008850469 @default.
- W3081416984 cites W2029120587 @default.
- W3081416984 cites W2048266405 @default.
- W3081416984 cites W2053146271 @default.
- W3081416984 cites W2070668052 @default.
- W3081416984 cites W2099211347 @default.
- W3081416984 cites W2100736103 @default.
- W3081416984 cites W2117510530 @default.
- W3081416984 cites W2129762799 @default.
- W3081416984 cites W2166681504 @default.
- W3081416984 cites W2241089358 @default.
- W3081416984 cites W2244785476 @default.
- W3081416984 cites W2267482727 @default.
- W3081416984 cites W2314231370 @default.
- W3081416984 cites W2319135800 @default.
- W3081416984 cites W2324430523 @default.
- W3081416984 cites W2325998682 @default.
- W3081416984 cites W2558748708 @default.
- W3081416984 cites W2570104014 @default.
- W3081416984 cites W2588919310 @default.
- W3081416984 cites W2594183968 @default.
- W3081416984 cites W2608491550 @default.
- W3081416984 cites W2767683865 @default.
- W3081416984 cites W2788593837 @default.
- W3081416984 cites W2923693308 @default.
- W3081416984 cites W2949223833 @default.
- W3081416984 cites W2970740744 @default.
- W3081416984 cites W2972246420 @default.
- W3081416984 cites W2999304916 @default.
- W3081416984 cites W3031514878 @default.
- W3081416984 cites W3035559885 @default.
- W3081416984 cites W3044113274 @default.
- W3081416984 cites W3098370560 @default.
- W3081416984 cites W3099893502 @default.
- W3081416984 cites W3105147568 @default.
- W3081416984 cites W3106324661 @default.
- W3081416984 cites W4249766277 @default.
- W3081416984 doi "https://doi.org/10.1101/2020.08.26.267971" @default.
- W3081416984 hasPublicationYear "2020" @default.
- W3081416984 type Work @default.
- W3081416984 sameAs 3081416984 @default.
- W3081416984 citedByCount "1" @default.
- W3081416984 countsByYear W30814169842021 @default.
- W3081416984 crossrefType "posted-content" @default.
- W3081416984 hasAuthorship W3081416984A5029661948 @default.
- W3081416984 hasAuthorship W3081416984A5039384552 @default.
- W3081416984 hasAuthorship W3081416984A5055379283 @default.
- W3081416984 hasBestOaLocation W30814169841 @default.
- W3081416984 hasConcept C111429119 @default.
- W3081416984 hasConcept C132525143 @default.
- W3081416984 hasConcept C134306372 @default.
- W3081416984 hasConcept C138885662 @default.
- W3081416984 hasConcept C147597530 @default.
- W3081416984 hasConcept C147789679 @default.
- W3081416984 hasConcept C154945302 @default.
- W3081416984 hasConcept C178790620 @default.
- W3081416984 hasConcept C185592680 @default.
- W3081416984 hasConcept C186060115 @default.
- W3081416984 hasConcept C202615002 @default.
- W3081416984 hasConcept C2776401178 @default.
- W3081416984 hasConcept C32909587 @default.
- W3081416984 hasConcept C33923547 @default.
- W3081416984 hasConcept C41008148 @default.
- W3081416984 hasConcept C41895202 @default.
- W3081416984 hasConcept C50644808 @default.
- W3081416984 hasConcept C59593255 @default.
- W3081416984 hasConcept C80444323 @default.
- W3081416984 hasConcept C86803240 @default.
- W3081416984 hasConceptScore W3081416984C111429119 @default.
- W3081416984 hasConceptScore W3081416984C132525143 @default.
- W3081416984 hasConceptScore W3081416984C134306372 @default.
- W3081416984 hasConceptScore W3081416984C138885662 @default.
- W3081416984 hasConceptScore W3081416984C147597530 @default.
- W3081416984 hasConceptScore W3081416984C147789679 @default.
- W3081416984 hasConceptScore W3081416984C154945302 @default.
- W3081416984 hasConceptScore W3081416984C178790620 @default.
- W3081416984 hasConceptScore W3081416984C185592680 @default.
- W3081416984 hasConceptScore W3081416984C186060115 @default.
- W3081416984 hasConceptScore W3081416984C202615002 @default.
- W3081416984 hasConceptScore W3081416984C2776401178 @default.
- W3081416984 hasConceptScore W3081416984C32909587 @default.
- W3081416984 hasConceptScore W3081416984C33923547 @default.