Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081446688> ?p ?o ?g. }
- W3081446688 abstract "Study Objectives: Sleep stage scoring is performed manually by sleep experts and is prone to subjective interpretation of scoring rules with low intra- and interscorer reliability. Many automatic systems rely on few small-scale databases for developing models, and generalizability to new datasets is thus unknown. We investigated a novel deep neural network to assess the generalizability of several large-scale cohorts. Methods: A deep neural network model was developed using 15684 polysomnography studies from five different cohorts. We applied four different scenarios: 1) impact of varying time-scales in the model; 2) performance of a single cohort on other cohorts of smaller, greater or equal size relative to the performance of other cohorts on a single cohort; 3) varying the fraction of mixed-cohort training data compared to using single-origin data; and 4) comparing models trained on combinations of data from 2, 3, and 4 cohorts. Results: Overall classification accuracy improved with increasing fractions of training data (0.25$%$: 0.782 $pm$ 0.097, 95$%$ CI [0.777-0.787]; 100$%$: 0.869 $pm$ 0.064, 95$%$ CI [0.864-0.872]), and with increasing number of data sources (2: 0.788 $pm$ 0.102, 95$%$ CI [0.787-0.790]; 3: 0.808 $pm$ 0.092, 95$%$ CI [0.807-0.810]; 4: 0.821 $pm$ 0.085, 95$%$ CI [0.819-0.823]). Different cohorts show varying levels of generalization to other cohorts. Conclusions: Automatic sleep stage scoring systems based on deep learning algorithms should consider as much data as possible from as many sources available to ensure proper generalization. Public datasets for benchmarking should be made available for future research." @default.
- W3081446688 created "2020-09-01" @default.
- W3081446688 creator A5036642361 @default.
- W3081446688 creator A5049561335 @default.
- W3081446688 creator A5057912258 @default.
- W3081446688 creator A5091471115 @default.
- W3081446688 date "2020-08-26" @default.
- W3081446688 modified "2023-10-13" @default.
- W3081446688 title "Automatic sleep stage classification with deep residual networks in a mixed-cohort setting" @default.
- W3081446688 cites W1494388112 @default.
- W3081446688 cites W194485135 @default.
- W3081446688 cites W1966507238 @default.
- W3081446688 cites W1978347377 @default.
- W3081446688 cites W1983256092 @default.
- W3081446688 cites W1997139643 @default.
- W3081446688 cites W2005852164 @default.
- W3081446688 cites W2061672958 @default.
- W3081446688 cites W2106896257 @default.
- W3081446688 cites W2117539524 @default.
- W3081446688 cites W2143159308 @default.
- W3081446688 cites W2144691514 @default.
- W3081446688 cites W2162800060 @default.
- W3081446688 cites W2164777277 @default.
- W3081446688 cites W2172894528 @default.
- W3081446688 cites W2302255633 @default.
- W3081446688 cites W2333343699 @default.
- W3081446688 cites W2344257056 @default.
- W3081446688 cites W2415140706 @default.
- W3081446688 cites W2604096629 @default.
- W3081446688 cites W2625514198 @default.
- W3081446688 cites W2786540712 @default.
- W3081446688 cites W2790486743 @default.
- W3081446688 cites W2792489592 @default.
- W3081446688 cites W2805033630 @default.
- W3081446688 cites W2805075551 @default.
- W3081446688 cites W2893892260 @default.
- W3081446688 cites W2898642424 @default.
- W3081446688 cites W2898717010 @default.
- W3081446688 cites W2902751862 @default.
- W3081446688 cites W2903696695 @default.
- W3081446688 cites W2904418346 @default.
- W3081446688 cites W2919115771 @default.
- W3081446688 cites W2946784505 @default.
- W3081446688 cites W2963469393 @default.
- W3081446688 cites W2963919481 @default.
- W3081446688 cites W2964065019 @default.
- W3081446688 cites W2964199361 @default.
- W3081446688 cites W2969159609 @default.
- W3081446688 cites W3014654442 @default.
- W3081446688 cites W3102724803 @default.
- W3081446688 doi "https://doi.org/10.1093/sleep/zsaa161" @default.
- W3081446688 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32844179" @default.
- W3081446688 hasPublicationYear "2020" @default.
- W3081446688 type Work @default.
- W3081446688 sameAs 3081446688 @default.
- W3081446688 citedByCount "37" @default.
- W3081446688 countsByYear W30814466882021 @default.
- W3081446688 countsByYear W30814466882022 @default.
- W3081446688 countsByYear W30814466882023 @default.
- W3081446688 crossrefType "journal-article" @default.
- W3081446688 hasAuthorship W3081446688A5036642361 @default.
- W3081446688 hasAuthorship W3081446688A5049561335 @default.
- W3081446688 hasAuthorship W3081446688A5057912258 @default.
- W3081446688 hasAuthorship W3081446688A5091471115 @default.
- W3081446688 hasBestOaLocation W30814466881 @default.
- W3081446688 hasConcept C105795698 @default.
- W3081446688 hasConcept C108583219 @default.
- W3081446688 hasConcept C11413529 @default.
- W3081446688 hasConcept C119857082 @default.
- W3081446688 hasConcept C126322002 @default.
- W3081446688 hasConcept C134306372 @default.
- W3081446688 hasConcept C154945302 @default.
- W3081446688 hasConcept C155512373 @default.
- W3081446688 hasConcept C177148314 @default.
- W3081446688 hasConcept C27158222 @default.
- W3081446688 hasConcept C2778205975 @default.
- W3081446688 hasConcept C2781326671 @default.
- W3081446688 hasConcept C33923547 @default.
- W3081446688 hasConcept C41008148 @default.
- W3081446688 hasConcept C50644808 @default.
- W3081446688 hasConcept C71924100 @default.
- W3081446688 hasConcept C72563966 @default.
- W3081446688 hasConceptScore W3081446688C105795698 @default.
- W3081446688 hasConceptScore W3081446688C108583219 @default.
- W3081446688 hasConceptScore W3081446688C11413529 @default.
- W3081446688 hasConceptScore W3081446688C119857082 @default.
- W3081446688 hasConceptScore W3081446688C126322002 @default.
- W3081446688 hasConceptScore W3081446688C134306372 @default.
- W3081446688 hasConceptScore W3081446688C154945302 @default.
- W3081446688 hasConceptScore W3081446688C155512373 @default.
- W3081446688 hasConceptScore W3081446688C177148314 @default.
- W3081446688 hasConceptScore W3081446688C27158222 @default.
- W3081446688 hasConceptScore W3081446688C2778205975 @default.
- W3081446688 hasConceptScore W3081446688C2781326671 @default.
- W3081446688 hasConceptScore W3081446688C33923547 @default.
- W3081446688 hasConceptScore W3081446688C41008148 @default.
- W3081446688 hasConceptScore W3081446688C50644808 @default.
- W3081446688 hasConceptScore W3081446688C71924100 @default.
- W3081446688 hasConceptScore W3081446688C72563966 @default.
- W3081446688 hasFunder F4320308364 @default.