Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081484192> ?p ?o ?g. }
- W3081484192 endingPage "876" @default.
- W3081484192 startingPage "876" @default.
- W3081484192 abstract "The state of materials and accordingly the properties of structures are changing over the period of use, which may influence the reliability and quality of the structure during its life-time. Therefore, identification of the model parameters of the system is a topic which has attracted attention in the content of structural health monitoring. The parameters of a constitutive model are usually identified by minimization of the difference between model response and experimental data. However, the measurement errors and differences in the specimens lead to deviations in the determined parameters. In this article, the focus is on the identification of material parameters of a viscoplastic damaging material using a stochastic simulation technique to generate artificial data which exhibit the same stochastic behavior as experimental data. It is proposed to use Bayesian inverse methods for parameter identification and therefore the model and damage parameters are identified by applying the Transitional Markov Chain Monte Carlo Method (TMCMC) and Gauss-Markov-Kalman filter (GMKF) approach. Identified parameters by using these two Bayesian approaches are compared with the true parameters in the simulation and with each other, and the efficiency of the identification methods is discussed. The aim of this study is to observe which one of the mentioned methods is more suitable and efficient to identify the model and damage parameters of a material model, as a highly non-linear model, using a limited surface displacement measurement vector and see how much information is indeed needed to estimate the parameters accurately." @default.
- W3081484192 created "2020-09-01" @default.
- W3081484192 creator A5002304596 @default.
- W3081484192 creator A5032795581 @default.
- W3081484192 creator A5037684251 @default.
- W3081484192 creator A5062849809 @default.
- W3081484192 creator A5066474131 @default.
- W3081484192 date "2020-07-01" @default.
- W3081484192 modified "2023-10-12" @default.
- W3081484192 title "Comparison of Bayesian Methods on Parameter Identification for a Viscoplastic Model with Damage" @default.
- W3081484192 cites W1538744051 @default.
- W3081484192 cites W1753465721 @default.
- W3081484192 cites W1964052244 @default.
- W3081484192 cites W1964083123 @default.
- W3081484192 cites W1964630469 @default.
- W3081484192 cites W1966465688 @default.
- W3081484192 cites W1969362074 @default.
- W3081484192 cites W1969645381 @default.
- W3081484192 cites W1972934317 @default.
- W3081484192 cites W1976942431 @default.
- W3081484192 cites W1982670637 @default.
- W3081484192 cites W1982703896 @default.
- W3081484192 cites W1990448754 @default.
- W3081484192 cites W1997909686 @default.
- W3081484192 cites W2004219573 @default.
- W3081484192 cites W2006965307 @default.
- W3081484192 cites W2014018514 @default.
- W3081484192 cites W2024716095 @default.
- W3081484192 cites W2027255422 @default.
- W3081484192 cites W2028311936 @default.
- W3081484192 cites W2040322363 @default.
- W3081484192 cites W2041686979 @default.
- W3081484192 cites W2045363046 @default.
- W3081484192 cites W2052725394 @default.
- W3081484192 cites W2054247041 @default.
- W3081484192 cites W2057512523 @default.
- W3081484192 cites W2059116590 @default.
- W3081484192 cites W2061640625 @default.
- W3081484192 cites W2073210146 @default.
- W3081484192 cites W2085014932 @default.
- W3081484192 cites W2087752560 @default.
- W3081484192 cites W2092886290 @default.
- W3081484192 cites W2125123544 @default.
- W3081484192 cites W2126418604 @default.
- W3081484192 cites W2136029353 @default.
- W3081484192 cites W2142378872 @default.
- W3081484192 cites W2143196324 @default.
- W3081484192 cites W2149131394 @default.
- W3081484192 cites W2150212054 @default.
- W3081484192 cites W2151313198 @default.
- W3081484192 cites W2172024201 @default.
- W3081484192 cites W2182806504 @default.
- W3081484192 cites W2251890423 @default.
- W3081484192 cites W2298626493 @default.
- W3081484192 cites W2321957512 @default.
- W3081484192 cites W2487250100 @default.
- W3081484192 cites W2529704343 @default.
- W3081484192 cites W2572000751 @default.
- W3081484192 cites W2780735101 @default.
- W3081484192 cites W2890518931 @default.
- W3081484192 cites W2951231773 @default.
- W3081484192 cites W2955498043 @default.
- W3081484192 cites W2962772758 @default.
- W3081484192 cites W2962859183 @default.
- W3081484192 cites W2963217000 @default.
- W3081484192 cites W2963817488 @default.
- W3081484192 cites W2990139750 @default.
- W3081484192 cites W2990512113 @default.
- W3081484192 cites W3005463129 @default.
- W3081484192 cites W3007094498 @default.
- W3081484192 cites W3009028291 @default.
- W3081484192 cites W3033857794 @default.
- W3081484192 cites W64418721 @default.
- W3081484192 cites W923920794 @default.
- W3081484192 doi "https://doi.org/10.3390/met10070876" @default.
- W3081484192 hasPublicationYear "2020" @default.
- W3081484192 type Work @default.
- W3081484192 sameAs 3081484192 @default.
- W3081484192 citedByCount "10" @default.
- W3081484192 countsByYear W30814841922020 @default.
- W3081484192 countsByYear W30814841922021 @default.
- W3081484192 countsByYear W30814841922022 @default.
- W3081484192 countsByYear W30814841922023 @default.
- W3081484192 crossrefType "journal-article" @default.
- W3081484192 hasAuthorship W3081484192A5002304596 @default.
- W3081484192 hasAuthorship W3081484192A5032795581 @default.
- W3081484192 hasAuthorship W3081484192A5037684251 @default.
- W3081484192 hasAuthorship W3081484192A5062849809 @default.
- W3081484192 hasAuthorship W3081484192A5066474131 @default.
- W3081484192 hasBestOaLocation W30814841921 @default.
- W3081484192 hasConcept C105795698 @default.
- W3081484192 hasConcept C107673813 @default.
- W3081484192 hasConcept C111350023 @default.
- W3081484192 hasConcept C11413529 @default.
- W3081484192 hasConcept C116834253 @default.
- W3081484192 hasConcept C126255220 @default.
- W3081484192 hasConcept C127413603 @default.
- W3081484192 hasConcept C135628077 @default.