Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081526560> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3081526560 endingPage "402" @default.
- W3081526560 startingPage "385" @default.
- W3081526560 abstract "Precision farming helps to achieve maintainable agriculture, with an objective of boosting agricultural products with minimal negative impact on the environment. This paper outlines a deep learning approach based on Single Shot multibox Detector (SSD) to classify and locate weeds in low-land rice precision farming. This approach is designed for post-emergence application of herbicide for weed control in lowland rice fields. The SSD uses VGG-16 deep learning-based network architecture to extract a feature map. The adoption of multiscale features and convolution filter enables the algorithm to have a considerable high accuracy even at varying resolutions. Using SSD to train the weed recognition model, an entire system accuracy of 86% was recorded. The algorithm also has a system sensitivity of 93% and a precision value of 84%. The trained SSD model had an accuracy of 99% for close-up high definition images. The results of the system performance evaluation showed that the trained model could be adopted on a real rice farm to help reduce herbicide wastage and improve rice production with low chemical usage." @default.
- W3081526560 created "2020-09-08" @default.
- W3081526560 creator A5012057155 @default.
- W3081526560 creator A5025504565 @default.
- W3081526560 creator A5030224106 @default.
- W3081526560 creator A5032211390 @default.
- W3081526560 creator A5086883242 @default.
- W3081526560 date "2020-09-02" @default.
- W3081526560 modified "2023-09-26" @default.
- W3081526560 title "Weed Recognition System for Low-Land Rice Precision Farming Using Deep Learning Approach" @default.
- W3081526560 cites W1589243122 @default.
- W3081526560 cites W1658390698 @default.
- W3081526560 cites W1964751650 @default.
- W3081526560 cites W1997772817 @default.
- W3081526560 cites W1998685830 @default.
- W3081526560 cites W2010036662 @default.
- W3081526560 cites W2035104373 @default.
- W3081526560 cites W2088553141 @default.
- W3081526560 cites W2109173556 @default.
- W3081526560 cites W2161684923 @default.
- W3081526560 cites W2176224867 @default.
- W3081526560 cites W2183341477 @default.
- W3081526560 cites W2230287068 @default.
- W3081526560 cites W2466424071 @default.
- W3081526560 cites W2609123810 @default.
- W3081526560 cites W2659864996 @default.
- W3081526560 cites W2743352521 @default.
- W3081526560 cites W2885770726 @default.
- W3081526560 cites W2886697152 @default.
- W3081526560 cites W2963300223 @default.
- W3081526560 cites W3106250896 @default.
- W3081526560 cites W46933155 @default.
- W3081526560 doi "https://doi.org/10.1007/978-3-030-51186-9_27" @default.
- W3081526560 hasPublicationYear "2020" @default.
- W3081526560 type Work @default.
- W3081526560 sameAs 3081526560 @default.
- W3081526560 citedByCount "2" @default.
- W3081526560 countsByYear W30815265602022 @default.
- W3081526560 countsByYear W30815265602023 @default.
- W3081526560 crossrefType "book-chapter" @default.
- W3081526560 hasAuthorship W3081526560A5012057155 @default.
- W3081526560 hasAuthorship W3081526560A5025504565 @default.
- W3081526560 hasAuthorship W3081526560A5030224106 @default.
- W3081526560 hasAuthorship W3081526560A5032211390 @default.
- W3081526560 hasAuthorship W3081526560A5086883242 @default.
- W3081526560 hasConcept C118518473 @default.
- W3081526560 hasConcept C120217122 @default.
- W3081526560 hasConcept C127413603 @default.
- W3081526560 hasConcept C154945302 @default.
- W3081526560 hasConcept C166957645 @default.
- W3081526560 hasConcept C205649164 @default.
- W3081526560 hasConcept C2775891814 @default.
- W3081526560 hasConcept C39432304 @default.
- W3081526560 hasConcept C41008148 @default.
- W3081526560 hasConcept C54286561 @default.
- W3081526560 hasConcept C6557445 @default.
- W3081526560 hasConcept C86803240 @default.
- W3081526560 hasConcept C88463610 @default.
- W3081526560 hasConceptScore W3081526560C118518473 @default.
- W3081526560 hasConceptScore W3081526560C120217122 @default.
- W3081526560 hasConceptScore W3081526560C127413603 @default.
- W3081526560 hasConceptScore W3081526560C154945302 @default.
- W3081526560 hasConceptScore W3081526560C166957645 @default.
- W3081526560 hasConceptScore W3081526560C205649164 @default.
- W3081526560 hasConceptScore W3081526560C2775891814 @default.
- W3081526560 hasConceptScore W3081526560C39432304 @default.
- W3081526560 hasConceptScore W3081526560C41008148 @default.
- W3081526560 hasConceptScore W3081526560C54286561 @default.
- W3081526560 hasConceptScore W3081526560C6557445 @default.
- W3081526560 hasConceptScore W3081526560C86803240 @default.
- W3081526560 hasConceptScore W3081526560C88463610 @default.
- W3081526560 hasLocation W30815265601 @default.
- W3081526560 hasOpenAccess W3081526560 @default.
- W3081526560 hasPrimaryLocation W30815265601 @default.
- W3081526560 hasRelatedWork W1504731330 @default.
- W3081526560 hasRelatedWork W2098510136 @default.
- W3081526560 hasRelatedWork W2353782740 @default.
- W3081526560 hasRelatedWork W2382920002 @default.
- W3081526560 hasRelatedWork W2620640898 @default.
- W3081526560 hasRelatedWork W3154800126 @default.
- W3081526560 hasRelatedWork W3201212491 @default.
- W3081526560 hasRelatedWork W4320489071 @default.
- W3081526560 hasRelatedWork W4321608687 @default.
- W3081526560 hasRelatedWork W4367055784 @default.
- W3081526560 isParatext "false" @default.
- W3081526560 isRetracted "false" @default.
- W3081526560 magId "3081526560" @default.
- W3081526560 workType "book-chapter" @default.