Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081545269> ?p ?o ?g. }
- W3081545269 endingPage "5157" @default.
- W3081545269 startingPage "5147" @default.
- W3081545269 abstract "Purpose This report proposes an approach to develop a method of microwave imaging for early, non‐invasive diagnosis of breast tumors. Here we describe a data‐processing method for obtaining radio images of biological heterogeneities and a new method for filtering static noise in received signals. Methods A specialized radar system was developed in the present study and used to perform sounding of synthetic phantoms with the dielectric properties of breast tissue in the range of 2–8 GHz. Datasets thus contained synthetic structures that imitated the dielectric properties of breast tissues and tumors. The permittivity values of the created artificial materials were verified using a waveguide cell. Tumors were simulated via plastic balls with a diameter of 1 cm that were filled with saline. A special ultra‐wide band (UWB) radar system developed at Tomsk State University was used to register radar responses from the phantoms. The radar system included the vector reflectometer, the UWB antenna, and the mechanical scanner that provided sounding in the hemisphere. We also used the time‐domain signals processing method to obtain the radio image signals. In this method, all signals received during scanning in the hemisphere are added with calculated delay for the given focus point. Special filtering of the constant components of the signal at each of the angular sounding latitudes was used to eliminate clutter in the received signal. This solution allowed us to account for additive clutter in the received signal from structural elements during scanning in the hemisphere. The influence of the number of angles on the quality of the resulting radio image was evaluated. Results The phantoms of a female breast and a malignant tumor from artificial materials with electrophysical characteristics close to those of real tissues have been developed. This facilitated verification of the proposed method for constructing radio images under more clinically relevant conditions. The proposed filtering of the constant components of the signal effectively doubled the signal‐to‐noise ratio in the resulting radio image compared with the standard algorithm of clutter filtering. The influence of different numbers of scan points on the quality of the final radio image are presented herein. It is concluded that it is sufficient to use not more than 600–800 sounding points for acceptable image quality. A further increase in the number of angles does not significantly improve image quality despite increasing the scan time. Conclusions Scanning in the hemisphere of the breast phantom using the proposed method of clutter filtering show that multi‐angle microwave imaging can form accurate three‐dimensional (3D) images with double the level of signal‐to‐clutter compared with the standard filtering approach. The images of artificial tumors were obtained when sounding in the range of 2–8 GHz with the resolution of about 5–7 mm." @default.
- W3081545269 created "2020-09-08" @default.
- W3081545269 creator A5020224552 @default.
- W3081545269 creator A5044891409 @default.
- W3081545269 creator A5047551627 @default.
- W3081545269 creator A5058028876 @default.
- W3081545269 creator A5063295791 @default.
- W3081545269 creator A5068857366 @default.
- W3081545269 creator A5081239814 @default.
- W3081545269 creator A5085976492 @default.
- W3081545269 date "2020-09-03" @default.
- W3081545269 modified "2023-10-18" @default.
- W3081545269 title "Use of multi‐angle ultra‐wide band microwave sounding for high resolution breast imaging" @default.
- W3081545269 cites W1970194774 @default.
- W3081545269 cites W1979723606 @default.
- W3081545269 cites W1982070774 @default.
- W3081545269 cites W1984165020 @default.
- W3081545269 cites W2001605080 @default.
- W3081545269 cites W2004329598 @default.
- W3081545269 cites W2009070287 @default.
- W3081545269 cites W2032228750 @default.
- W3081545269 cites W2048541712 @default.
- W3081545269 cites W2068205881 @default.
- W3081545269 cites W2088957940 @default.
- W3081545269 cites W2094099316 @default.
- W3081545269 cites W2096016047 @default.
- W3081545269 cites W2097239011 @default.
- W3081545269 cites W2101085779 @default.
- W3081545269 cites W2102645021 @default.
- W3081545269 cites W2106874336 @default.
- W3081545269 cites W2110763396 @default.
- W3081545269 cites W2123014679 @default.
- W3081545269 cites W2123090473 @default.
- W3081545269 cites W2136872537 @default.
- W3081545269 cites W2138483996 @default.
- W3081545269 cites W2148106373 @default.
- W3081545269 cites W2151211575 @default.
- W3081545269 cites W2158010556 @default.
- W3081545269 cites W2161663864 @default.
- W3081545269 cites W2164256114 @default.
- W3081545269 cites W2166383957 @default.
- W3081545269 cites W2170220386 @default.
- W3081545269 cites W2247400991 @default.
- W3081545269 cites W2316734646 @default.
- W3081545269 cites W2481808791 @default.
- W3081545269 cites W2617092979 @default.
- W3081545269 cites W2761268211 @default.
- W3081545269 cites W2794181528 @default.
- W3081545269 cites W2942240350 @default.
- W3081545269 cites W4241664300 @default.
- W3081545269 doi "https://doi.org/10.1002/mp.14408" @default.
- W3081545269 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32885421" @default.
- W3081545269 hasPublicationYear "2020" @default.
- W3081545269 type Work @default.
- W3081545269 sameAs 3081545269 @default.
- W3081545269 citedByCount "7" @default.
- W3081545269 countsByYear W30815452692021 @default.
- W3081545269 countsByYear W30815452692022 @default.
- W3081545269 countsByYear W30815452692023 @default.
- W3081545269 crossrefType "journal-article" @default.
- W3081545269 hasAuthorship W3081545269A5020224552 @default.
- W3081545269 hasAuthorship W3081545269A5044891409 @default.
- W3081545269 hasAuthorship W3081545269A5047551627 @default.
- W3081545269 hasAuthorship W3081545269A5058028876 @default.
- W3081545269 hasAuthorship W3081545269A5063295791 @default.
- W3081545269 hasAuthorship W3081545269A5068857366 @default.
- W3081545269 hasAuthorship W3081545269A5081239814 @default.
- W3081545269 hasAuthorship W3081545269A5085976492 @default.
- W3081545269 hasConcept C104267543 @default.
- W3081545269 hasConcept C10929652 @default.
- W3081545269 hasConcept C111368507 @default.
- W3081545269 hasConcept C120665830 @default.
- W3081545269 hasConcept C121332964 @default.
- W3081545269 hasConcept C127313418 @default.
- W3081545269 hasConcept C132094186 @default.
- W3081545269 hasConcept C192562407 @default.
- W3081545269 hasConcept C199360897 @default.
- W3081545269 hasConcept C24890656 @default.
- W3081545269 hasConcept C2779843651 @default.
- W3081545269 hasConcept C2779885931 @default.
- W3081545269 hasConcept C41008148 @default.
- W3081545269 hasConcept C44838205 @default.
- W3081545269 hasConcept C554190296 @default.
- W3081545269 hasConcept C55510283 @default.
- W3081545269 hasConcept C62649853 @default.
- W3081545269 hasConcept C76155785 @default.
- W3081545269 hasConceptScore W3081545269C104267543 @default.
- W3081545269 hasConceptScore W3081545269C10929652 @default.
- W3081545269 hasConceptScore W3081545269C111368507 @default.
- W3081545269 hasConceptScore W3081545269C120665830 @default.
- W3081545269 hasConceptScore W3081545269C121332964 @default.
- W3081545269 hasConceptScore W3081545269C127313418 @default.
- W3081545269 hasConceptScore W3081545269C132094186 @default.
- W3081545269 hasConceptScore W3081545269C192562407 @default.
- W3081545269 hasConceptScore W3081545269C199360897 @default.
- W3081545269 hasConceptScore W3081545269C24890656 @default.
- W3081545269 hasConceptScore W3081545269C2779843651 @default.
- W3081545269 hasConceptScore W3081545269C2779885931 @default.