Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081574384> ?p ?o ?g. }
- W3081574384 endingPage "6031" @default.
- W3081574384 startingPage "6031" @default.
- W3081574384 abstract "A simple and accurate evaluation method of broken rock zone thickness (BRZT), which is usually used to describe the broken rock zone (BRZ), is meaningful, due to its ability to provide a reference for the roadway stability evaluation and support design. To create a relationship between various geological variables and the broken rock zone thickness (BRZT), the multiple linear regression (MLR), artificial neural network (ANN), Gaussian process (GP) and particle swarm optimization algorithm (PSO)-GP method were utilized, and the corresponding intelligence models were developed based on the database collected from various mines in China. Four variables including embedding depth (ED), drift span (DS), surrounding rock mass strength (RMS) and joint index (JI) were selected to train the intelligence model, while broken rock zone thickness (BRZT) is chosen as the output variable, and the k-fold cross-validation method was applied in the training process. After training, three validation metrics including variance account for (VAF), determination coefficient (R2) and root mean squared error (RMSE) were applied to describe the predictive performance of these developed models. After comparing performance based on a ranking method, the obtained results show that the PSO-GP model provides the best predictive performance in estimating broken rock zone thickness (BRZT). In addition, the sensitive effect of collected variables on broken rock zone thickness (BRZT) can be listed as JI, ED, DS and RMS, and JI was found to be the most sensitive factor." @default.
- W3081574384 created "2020-09-08" @default.
- W3081574384 creator A5011476886 @default.
- W3081574384 creator A5024434626 @default.
- W3081574384 creator A5028521975 @default.
- W3081574384 creator A5041654385 @default.
- W3081574384 creator A5048510988 @default.
- W3081574384 date "2020-08-31" @default.
- W3081574384 modified "2023-10-17" @default.
- W3081574384 title "Advanced Prediction of Roadway Broken Rock Zone Based on a Novel Hybrid Soft Computing Model Using Gaussian Process and Particle Swarm Optimization" @default.
- W3081574384 cites W1971891346 @default.
- W3081574384 cites W1982551906 @default.
- W3081574384 cites W1984921330 @default.
- W3081574384 cites W1988232079 @default.
- W3081574384 cites W1993371520 @default.
- W3081574384 cites W1993680681 @default.
- W3081574384 cites W1999812505 @default.
- W3081574384 cites W2002536914 @default.
- W3081574384 cites W2005357680 @default.
- W3081574384 cites W2020949759 @default.
- W3081574384 cites W2022342514 @default.
- W3081574384 cites W2037138683 @default.
- W3081574384 cites W2047350787 @default.
- W3081574384 cites W2063083342 @default.
- W3081574384 cites W2068108730 @default.
- W3081574384 cites W2089775076 @default.
- W3081574384 cites W2179823001 @default.
- W3081574384 cites W2209549787 @default.
- W3081574384 cites W2223110200 @default.
- W3081574384 cites W2329237660 @default.
- W3081574384 cites W2343377801 @default.
- W3081574384 cites W2427322446 @default.
- W3081574384 cites W2519188502 @default.
- W3081574384 cites W2605614336 @default.
- W3081574384 cites W2783241637 @default.
- W3081574384 cites W2791778019 @default.
- W3081574384 cites W2793257870 @default.
- W3081574384 cites W2797292015 @default.
- W3081574384 cites W2803217730 @default.
- W3081574384 cites W2804369244 @default.
- W3081574384 cites W2807213788 @default.
- W3081574384 cites W2883429111 @default.
- W3081574384 cites W2890756131 @default.
- W3081574384 cites W2890980398 @default.
- W3081574384 cites W2896167801 @default.
- W3081574384 cites W2907556463 @default.
- W3081574384 cites W2908010641 @default.
- W3081574384 cites W2910749883 @default.
- W3081574384 cites W2912487211 @default.
- W3081574384 cites W2913340792 @default.
- W3081574384 cites W2914427946 @default.
- W3081574384 cites W2918736446 @default.
- W3081574384 cites W2943197862 @default.
- W3081574384 cites W2945688601 @default.
- W3081574384 cites W2950419939 @default.
- W3081574384 cites W2953959218 @default.
- W3081574384 cites W2956233930 @default.
- W3081574384 cites W2969357546 @default.
- W3081574384 cites W2978202285 @default.
- W3081574384 cites W2979509238 @default.
- W3081574384 cites W2987501549 @default.
- W3081574384 cites W2989912719 @default.
- W3081574384 cites W2997917996 @default.
- W3081574384 cites W2999062487 @default.
- W3081574384 cites W3003288261 @default.
- W3081574384 cites W3004662726 @default.
- W3081574384 cites W3007050041 @default.
- W3081574384 cites W3008122929 @default.
- W3081574384 cites W3009157225 @default.
- W3081574384 cites W3011784078 @default.
- W3081574384 cites W3024987184 @default.
- W3081574384 cites W3093375267 @default.
- W3081574384 cites W3105252106 @default.
- W3081574384 doi "https://doi.org/10.3390/app10176031" @default.
- W3081574384 hasPublicationYear "2020" @default.
- W3081574384 type Work @default.
- W3081574384 sameAs 3081574384 @default.
- W3081574384 citedByCount "10" @default.
- W3081574384 countsByYear W30815743842021 @default.
- W3081574384 countsByYear W30815743842022 @default.
- W3081574384 countsByYear W30815743842023 @default.
- W3081574384 crossrefType "journal-article" @default.
- W3081574384 hasAuthorship W3081574384A5011476886 @default.
- W3081574384 hasAuthorship W3081574384A5024434626 @default.
- W3081574384 hasAuthorship W3081574384A5028521975 @default.
- W3081574384 hasAuthorship W3081574384A5041654385 @default.
- W3081574384 hasAuthorship W3081574384A5048510988 @default.
- W3081574384 hasBestOaLocation W30815743841 @default.
- W3081574384 hasConcept C105795698 @default.
- W3081574384 hasConcept C11413529 @default.
- W3081574384 hasConcept C119857082 @default.
- W3081574384 hasConcept C124101348 @default.
- W3081574384 hasConcept C127313418 @default.
- W3081574384 hasConcept C139945424 @default.
- W3081574384 hasConcept C154945302 @default.
- W3081574384 hasConcept C187320778 @default.
- W3081574384 hasConcept C2780092901 @default.
- W3081574384 hasConcept C33923547 @default.