Matches in SemOpenAlex for { <https://semopenalex.org/work/W3081619705> ?p ?o ?g. }
- W3081619705 abstract "Computer-aided diagnosis (CAD) has long become an integral part of radiological management of breast disease, facilitating a number of important clinical applications, including quantitative assessment of breast density and early detection of malignancies based on X-ray mammography. Common to such applications is the need to automatically discriminate between breast tissue and adjacent anatomy, with the latter being predominantly represented by pectoralis major (or pectoral muscle). Especially in the case of mammograms acquired in the mediolateral oblique (MLO) view, the muscle is easily confusable with some elements of breast anatomy due to their morphological and photometric similarity. As a result, the problem of automatic detection and segmentation of pectoral muscle in MLO mammograms remains a challenging task, innovative approaches to which are still required and constantly searched for. To address this problem, the present paper introduces a two-step segmentation strategy based on a combined use of data-driven prediction (deep learning) and graph-based image processing. In particular, the proposed method employs a convolutional neural network (CNN) which is designed to predict the location of breast-pectoral boundary at different levels of spatial resolution. Subsequently, the predictions are used by the second stage of the algorithm, in which the desired boundary is recovered as a solution to the shortest path problem on a specially designed graph. The proposed algorithm has been tested on three different datasets (i.e., MIAS, CBIS-DDSm and InBreast) using a range of quantitative metrics. The results of comparative analysis show considerable improvement over state-of-the-art, while offering the possibility of model-free and fully automatic processing." @default.
- W3081619705 created "2020-09-08" @default.
- W3081619705 creator A5060926838 @default.
- W3081619705 creator A5075566770 @default.
- W3081619705 date "2020-08-29" @default.
- W3081619705 modified "2023-09-27" @default.
- W3081619705 title "On segmentation of pectoralis muscle in digital mammograms by means of deep learning" @default.
- W3081619705 cites W1137379830 @default.
- W3081619705 cites W1686810756 @default.
- W3081619705 cites W1988212960 @default.
- W3081619705 cites W2040434704 @default.
- W3081619705 cites W2078176535 @default.
- W3081619705 cites W2103659135 @default.
- W3081619705 cites W2104254046 @default.
- W3081619705 cites W2108598243 @default.
- W3081619705 cites W2119061066 @default.
- W3081619705 cites W2133059825 @default.
- W3081619705 cites W2161545489 @default.
- W3081619705 cites W2226042833 @default.
- W3081619705 cites W2514575318 @default.
- W3081619705 cites W2523246573 @default.
- W3081619705 cites W2525606708 @default.
- W3081619705 cites W2537794659 @default.
- W3081619705 cites W2547496647 @default.
- W3081619705 cites W2560622558 @default.
- W3081619705 cites W2752885492 @default.
- W3081619705 cites W2776937175 @default.
- W3081619705 cites W2790409298 @default.
- W3081619705 cites W2895008718 @default.
- W3081619705 cites W2900388366 @default.
- W3081619705 cites W2952865381 @default.
- W3081619705 cites W2954996726 @default.
- W3081619705 cites W2967279309 @default.
- W3081619705 cites W3009158303 @default.
- W3081619705 cites W304373761 @default.
- W3081619705 cites W845365781 @default.
- W3081619705 cites W913903402 @default.
- W3081619705 cites W2766595825 @default.
- W3081619705 hasPublicationYear "2020" @default.
- W3081619705 type Work @default.
- W3081619705 sameAs 3081619705 @default.
- W3081619705 citedByCount "0" @default.
- W3081619705 crossrefType "posted-content" @default.
- W3081619705 hasAuthorship W3081619705A5060926838 @default.
- W3081619705 hasAuthorship W3081619705A5075566770 @default.
- W3081619705 hasConcept C105702510 @default.
- W3081619705 hasConcept C108583219 @default.
- W3081619705 hasConcept C121608353 @default.
- W3081619705 hasConcept C124504099 @default.
- W3081619705 hasConcept C126322002 @default.
- W3081619705 hasConcept C132525143 @default.
- W3081619705 hasConcept C153180895 @default.
- W3081619705 hasConcept C154945302 @default.
- W3081619705 hasConcept C22590252 @default.
- W3081619705 hasConcept C2777956544 @default.
- W3081619705 hasConcept C2780472235 @default.
- W3081619705 hasConcept C2781281974 @default.
- W3081619705 hasConcept C31972630 @default.
- W3081619705 hasConcept C41008148 @default.
- W3081619705 hasConcept C530470458 @default.
- W3081619705 hasConcept C71924100 @default.
- W3081619705 hasConcept C80444323 @default.
- W3081619705 hasConcept C81363708 @default.
- W3081619705 hasConcept C89600930 @default.
- W3081619705 hasConceptScore W3081619705C105702510 @default.
- W3081619705 hasConceptScore W3081619705C108583219 @default.
- W3081619705 hasConceptScore W3081619705C121608353 @default.
- W3081619705 hasConceptScore W3081619705C124504099 @default.
- W3081619705 hasConceptScore W3081619705C126322002 @default.
- W3081619705 hasConceptScore W3081619705C132525143 @default.
- W3081619705 hasConceptScore W3081619705C153180895 @default.
- W3081619705 hasConceptScore W3081619705C154945302 @default.
- W3081619705 hasConceptScore W3081619705C22590252 @default.
- W3081619705 hasConceptScore W3081619705C2777956544 @default.
- W3081619705 hasConceptScore W3081619705C2780472235 @default.
- W3081619705 hasConceptScore W3081619705C2781281974 @default.
- W3081619705 hasConceptScore W3081619705C31972630 @default.
- W3081619705 hasConceptScore W3081619705C41008148 @default.
- W3081619705 hasConceptScore W3081619705C530470458 @default.
- W3081619705 hasConceptScore W3081619705C71924100 @default.
- W3081619705 hasConceptScore W3081619705C80444323 @default.
- W3081619705 hasConceptScore W3081619705C81363708 @default.
- W3081619705 hasConceptScore W3081619705C89600930 @default.
- W3081619705 hasLocation W30816197051 @default.
- W3081619705 hasOpenAccess W3081619705 @default.
- W3081619705 hasPrimaryLocation W30816197051 @default.
- W3081619705 hasRelatedWork W189924779 @default.
- W3081619705 hasRelatedWork W1992298788 @default.
- W3081619705 hasRelatedWork W2009372420 @default.
- W3081619705 hasRelatedWork W2131062842 @default.
- W3081619705 hasRelatedWork W2190936363 @default.
- W3081619705 hasRelatedWork W2271473780 @default.
- W3081619705 hasRelatedWork W2293965117 @default.
- W3081619705 hasRelatedWork W2515133811 @default.
- W3081619705 hasRelatedWork W2796079567 @default.
- W3081619705 hasRelatedWork W2963599113 @default.
- W3081619705 hasRelatedWork W2992403067 @default.
- W3081619705 hasRelatedWork W3008713359 @default.
- W3081619705 hasRelatedWork W3033924721 @default.
- W3081619705 hasRelatedWork W3085676317 @default.